2,488 research outputs found

    Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement

    Full text link
    We study how the spontaneous relaxation of a qubit affects a continuous quantum non-demolition measurement of the initial state of the qubit. Given some noisy measurement record Ψ\Psi, we seek an estimate of whether the qubit was initially in the ground or excited state. We investigate four different measurement protocols, three of which use a linear filter (with different weighting factors) and a fourth which uses a full non-linear filter that gives the theoretically optimal estimate of the initial state of the qubit. We find that relaxation of the qubit at rate 1/T11/T_1 strongly influences the fidelity of any measurement protocol. To avoid errors due to this decay, the measurement must be completed in a time that decrease linearly with the desired fidelity while maintaining an adequate signal to noise ratio. We find that for the non-linear filter the predicted fidelity, as expected, is always better than the linear filters and that the fidelity is a monotone increasing function of the measurement time. For example, to achieve a fidelity of 90%, the box car linear filter requires a signal to noise ratio of ∼30\sim 30 in a time T1T_1 whereas the non-linear filter only requires a signal to noise ratio of ∼18\sim 18.Comment: 12 pages, 6 figure

    Non Markovian Quantum Repeated Interactions and Measurements

    Full text link
    A non-Markovian model of quantum repeated interactions between a small quantum system and an infinite chain of quantum systems is presented. By adapting and applying usual pro jection operator techniques in this context, discrete versions of the integro-differential and time-convolutioness Master equations for the reduced system are derived. Next, an intuitive and rigorous description of the indirect quantum measurement principle is developed and a discrete non Markovian stochastic Master equation for the open system is obtained. Finally, the question of unravelling in a particular model of non-Markovian quantum interactions is discussed.Comment: 22 page

    Non-Markovian stochastic Schr\"odinger equations: Generalization to real-valued noise using quantum measurement theory

    Full text link
    Do stochastic Schr\"odinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system {\em on average} obeys a master equation, the answer is yes. Markovian stochastic Schr\"odinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic \sch equation introduced by Strunz, Di\' osi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum measurement theory approach, we rederive their unraveling which involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection respectively. Although we use quantum measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.Comment: 17 pages, 3 figure

    Jump-like unravelings for non-Markovian open quantum systems

    Full text link
    Non-Markovian evolution of an open quantum system can be `unraveled' into pure state trajectories generated by a non-Markovian stochastic (diffusive) Schr\"odinger equation, as introduced by Di\'osi, Gisin, and Strunz. Recently we have shown that such equations can be derived using the modal (hidden variable) interpretation of quantum mechanics. In this paper we generalize this theory to treat jump-like unravelings. To illustrate the jump-like behavior we consider a simple system: A classically driven (at Rabi frequency Ω\Omega) two-level atom coupled linearly to a three mode optical bath, with a central frequency equal to the frequency of the atom, ω0\omega_0, and the two side bands have frequencies ω0±Ω\omega_0\pm\Omega. In the large Ω\Omega limit we observed that the jump-like behavior is similar to that observed in this system with a Markovian (broad band) bath. This is expected as in the Markovian limit the fluorescence spectrum for a strongly driven two level atom takes the form of a Mollow triplet. However the length of time for which the Markovian-like behaviour persists depends upon {\em which} jump-like unraveling is used.Comment: 11 pages, 5 figure

    A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED

    Full text link
    We present a way for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED. The two logical states of a qubit are represented by the two lowest levels of each system while a higher-energy level is used for the gate implementation. The method operates essentially by preparing a WW state conditioned on the states of the control qubits, creating a single photon in the cavity mode, and then performing an arbitrary rotation on the states of the target qubit with assistance of the cavity photon. It is interesting to note that the basic operational steps for implementing the proposed gate do not increase with the number nn of qubits, and the gate operation time decreases as the number of qubits increases. This proposal is quite general, which can be applied to various types of superconducting devices in a cavity or coupled to a resonator.Comment: Six figures, accepted by Journal of Physics: Condensed Matte

    Dissipation and Ultrastrong Coupling in Circuit QED

    Full text link
    Cavity and circuit QED study light-matter interaction at its most fundamental level. Yet, this interaction is most often neglected when considering the coupling of this system with an environment. In this paper, we show how this simplification, which leads to the standard quantum optics master equation, is at the root of unphysical effects. Including qubit relaxation and dephasing, and cavity relaxation, we derive a master equation that takes into account the qubit-resonator coupling. Special attention is given to the ultrastrong coupling regime, where the failure of the quantum optical master equation is manifest. In this situation, our model predicts an asymmetry in the vacuum Rabi splitting that could be used to probe dephasing noise at unexplored frequencies. We also show how fluctuations in the qubit frequency can cause sideband transitions, squeezing, and Casimir-like photon generation.Comment: 16 pages, 6 figure

    Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect

    Full text link
    We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line resonator. Starting from a master equation description of this coupled system and using a polaron transformation, we obtain an exact effective master equation for the qubit. We then use quantum trajectory theory to investigate the measurement of the qubit by continuous homodyne measurement of the resonator out-field. Using the same porlaron transformation, a stochastic master equation for the conditional state of the qubit is obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover from diffusive to jump-like behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is shown to exhibit quantum Zeno behavior.Comment: 20 pages, 12 figure
    • …
    corecore