38,551 research outputs found
Raman Fingerprint of Charged Impurities in Graphene
We report strong variations in the Raman spectra for different single-layer
graphene samples obtained by micromechanical cleavage, which reveals the
presence of excess charges, even in the absence of intentional doping. Doping
concentrations up to ~10^13 cm-2 are estimated from the G peak shift and width,
and the variation of both position and relative intensity of the second order
2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less
than 1 micron.Comment: 3 pages, 5 figure
A new approach to the study of quasi-normal modes of rotating stars
We propose a new method to study the quasi-normal modes of rotating
relativistic stars. Oscillations are treated as perturbations in the frequency
domain of the stationary, axisymmetric background describing a rotating star.
The perturbed quantities are expanded in circular harmonics, and the resulting
2D-equations they satisfy are integrated using spectral methods in the
(r,theta)-plane. The asymptotic conditions at infinity, needed to find the mode
frequencies, are implemented by generalizing the standing wave boundary
condition commonly used in the non rotating case. As a test, the method is
applied to find the quasi-normal mode frequencies of a slowly rotating star.Comment: 24 pages, 7 figures, submitted to Phys. Rev.
Dynamical and radiative properties of astrophysical supersonic jets I. Cocoon morphologies
We present the results of a numerical analysis of the propagation and
interaction of a supersonic jet with the external medium. We discuss the motion
of the head of the jet into the ambient in different physical conditions,
carrying out calculations with different Mach numbers and density ratios of the
jet to the exteriors. Performing the calculation in a reference frame in motion
with the jet head, we can follow in detail its long term dynamics. This
numerical scheme allows us also to study the morphology of the cocoon for
different physical parameters. We find that the propagation velocity of the jet
head into the ambient medium strongly influences the morphology of the cocoon,
and this result can be relevant in connection to the origin and structure of
lobes in extragalactic radiosources.Comment: 14 pages, TeX. Accepted for A&
Universality of slow decorrelation in KPZ growth
There has been much success in describing the limiting spatial fluctuations
of growth models in the Kardar-Parisi-Zhang (KPZ) universality class. A proper
rescaling of time should introduce a non-trivial temporal dimension to these
limiting fluctuations. In one-dimension, the KPZ class has the dynamical
scaling exponent , that means one should find a universal space-time
limiting process under the scaling of time as , space like
and fluctuations like as .
In this paper we provide evidence for this belief. We prove that under
certain hypotheses, growth models display temporal slow decorrelation. That is
to say that in the scalings above, the limiting spatial process for times and are identical, for any . The hypotheses are known
to be satisfied for certain last passage percolation models, the polynuclear
growth model, and the totally / partially asymmetric simple exclusion process.
Using slow decorrelation we may extend known fluctuation limit results to
space-time regions where correlation functions are unknown.
The approach we develop requires the minimal expected hypotheses for slow
decorrelation to hold and provides a simple and intuitive proof which applied
to a wide variety of models.Comment: Exposition improved, typos correcte
Distributed bounded-error state estimation for partitioned systems based on practical robust positive invariance
We propose a partition-based state estimator for linear discrete-time systems
composed by coupled subsystems affected by bounded disturbances. The
architecture is distributed in the sense that each subsystem is equipped with a
local state estimator that exploits suitable pieces of information from parent
subsystems. Moreover, differently from methods based on moving horizon
estimation, our approach does not require the on-line solution to optimization
problems. Our state-estimation scheme, that is based on the notion of practical
robust positive invariance developed in Rakovic 2011, also guarantees
satisfaction of constraints on local estimation errors and it can be updated
with a limited computational effort when subsystems are added or removed
- …