4,670 research outputs found
A large-N analysis of the local quantum critical point and the spin-liquid phase
We study analytically the Kondo lattice model with an additional
nearest-neighbor antiferromagnetic interaction in the framework of large-N
theory. We find that there is a local quantum critical point between two
phases, a normal Fermi-liquid and a spin-liquid in which the spins are
decoupled from the conduction electrons. The local spin susceptibility displays
a power-law divergence throughout the spin liquid phase. We check the
reliability of the large-N results by solving by quantum Monte Carlo simulation
the N=2 spin-liquid problem with no conduction electrons and find qualitative
agreement. We show that the spin-liquid phase is unstable at low temperatures,
suggestive of a first-order transition to an ordered phase.Comment: 4 pages and 1 figur
An analysis of B_{d,s} mixing angles in presence of New Physics and an update of Bs -> K0* anti-K0*
We discuss a simple approach to measure the weak mixing angles phi_s and
phi_d of the Bs and Bd systems in the presence of New Physics. We present a new
expression that allows one to measure directly the New Physics mixing angles if
New Physics contributes significantly to the mixing only. We apply the method
to specific penguin-mediated B->PP, B->PV and B ->VV modes. We provide a very
stringent and simple bound on the direct CP asymmetries of all these modes, the
violation of which is a signal of New Physics in decay. Within the same
theoretical framework, an updated prediction for the branching ratio of Bs->K0*
anti-K0* is presented, which can be compared with a recent LHCb analysis.Comment: 11 pages, 3 figure
Kondo effect in "bad metals"
We study the low-temperature properties of a Kondo lattice using the large-N
formalism. For a singular density of conduction states (DOS), we generalize the
single-impurity result of Withoff and Fradkin: the strong-coupling fixed point
becomes irrelevant if the DOS vanishes at the Fermi level E_F. However, for E_F
close enough to the singularity, and close to half-filling, the Kondo
temperature, , can become much smaller than the characteristic Fermi
liquid scale. At T=0, a meta-magnetic transition occurs at the critical
magnetic field H_c ~ (k_B/mu_B) T_K. Our results provide a qualitative
explanation for the behavior of the YbInCu_4 compound below the valence-change
transition.Comment: 4 pages, 1 figur
Nonlocal interactions in doped cuprates: correlated motion of Zhang-Rice polarons
In-plane, inter-carrier correlations in hole doped cuprates are investigated
by ab initio multiconfiguration calculations. The dressed carriers display
features that are reminiscent of both Zhang-Rice (ZR) CuO4 singlet states and
Jahn-Teller polarons. The interaction between these quasiparticles is
repulsive. At doping levels that are high enough, the interplay between
long-range unscreened Coulomb interactions and long-range phase coherence among
the O-ion half-breathing vibrations on the ZR plaquettes may lead to a strong
reduction of the effective adiabatic energy barrier associated to each
polaronic state. Tunneling effects cannot be neglected for a relatively flat,
multi-well energy landscape. We suggest that the coherent, superconducting
quantum state is the result of such coherent quantum lattice fluctuations
involving the in-plane O ions. Our findings appear to support models where the
superconductivity is related to a lowering of the in-plane kinetic energy
Disorder effects in the quantum Heisenberg model: An Extended Dynamical mean-field theory analysis
We investigate a quantum Heisenberg model with both antiferromagnetic and
disordered nearest-neighbor couplings. We use an extended dynamical mean-field
approach, which reduces the lattice problem to a self-consistent local impurity
problem that we solve by using a quantum Monte Carlo algorithm. We consider
both two- and three-dimensional antiferromagnetic spin fluctuations and
systematically analyze the effect of disorder. We find that in three dimensions
for any small amount of disorder a spin-glass phase is realized. In two
dimensions, while clean systems display the properties of a highly correlated
spin-liquid (where the local spin susceptibility has a non-integer power-low
frequency and/or temperature dependence), in the present case this behavior is
more elusive unless disorder is very small. This is because the spin-glass
transition temperature leaves only an intermediate temperature regime where the
system can display the spin-liquid behavior, which turns out to be more
apparent in the static than in the dynamical susceptibility.Comment: 15 pages, 7 figure
Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions
We investigate metamagnetic transitions in models for heavy fermions by
considering the doped Kondo lattice model in two dimensions. Results are
obtained within the framework of dynamical mean field and dynamical cluster
approximations. Universal magnetization curves for different temperatures and
Kondo couplings develop upon scaling with the lattice coherence temperature.
Furthermore, the coupling of the local moments to the magnetic field is varied
to take into account the different Land\'e factors of localized and itinerant
electrons. The competition between the lattice coherence scale and the Zeeman
energy scale allows for two interpretations of the metamagnetism in heavy
fermions: Kondo breakdown or Lifshitz transitions. By tracking the
single-particle residue through the transition, we can uniquely conclude in
favor of the Lifshitz transition scenario. In this scenario, a quasiparticle
band drops below the Fermi energy which leads to a change in topology of the
Fermi surface.Comment: 8 pages, 7 figure
The modulated spin liquid: a new paradigm for URuSi
We argue that near a Kondo breakdown critical point, a spin liquid with
spatial modulations can form. Unlike its uniform counterpart, we find that this
occurs via a second order phase transition. The amount of entropy quenched when
ordering is of the same magnitude as for an antiferromagnet. Moreover, the two
states are competitive, and at low temperatures are separated by a first order
phase transition. The modulated spin liquid we find breaks symmetry, as
recently seen in the hidden order phase of URuSi. Based on this, we
suggest that the modulated spin liquid is a viable candidate for this unique
phase of matter.Comment: 4 pages, 2 figure
Heavy-fermion and spin-liquid behavior in a Kondo lattice with magnetic frustration
We study the competition between the Kondo effect and frustrating exchange
interactions in a Kondo-lattice model within a large- dynamical
mean-field theory. We find a T=0 phase transition between a heavy Fermi-liquid
and a spin-liquid for a critical value of the exchange , the
single-impurity Kondo temperature. Close to the critical point, the Fermi
liquid coherence scale is strongly reduced and the effective mass
strongly enhanced. The regime is characterized by spin-liquid
magnetic correlations and non-Fermi-liquid properties. It is suggested that
magnetic frustration is a general mechanism which is essential to explain the
large effective mass of some metallic compounds such as LiVO.Comment: 7 pages, 1 figure. Late
Numerical simulation of hydraulic processes in anaerobic bioreactors
The aim of the work was to determine the rate and uniformity of temperature distribution in the amount of biogas plant constructed by UrFU, "Avanguard" PLC and "Gildia-M" Ltd on the stage of warming and achieving the rated work conditions corresponding to the mesophilic fermentation process. A computer model of the biogas reactor, considering the main unit features, was created. The installation heating was carried out by uniform thermal energy supply through the outer surface of the vessel full of substrate. Numerical solution was achieved by the finite volume method which has the following features. The calculation results in the form of temperature fields and the substrate particle trajectories for several time moments are given in this paper. The results analysis shows the possibility to use the model for the thermohydraulic computation of various operation modes of the bioreactor. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
CP parameters of the B systems from Tevatron
Recent results on CP parameters of the B systems obtained by the CDF and D0
collaborations using the data samples collected at the Tevatron Collider in the
period 2002 - 2007 were presented at the QCD 2008 conference (Montpellier,
France). These results include measurements of the mixing phase, decay width
difference, and CP violation parameters in the Bs and Bu decays.Comment: Presented at the QCD 2008 Conference (Montpellier, France); added
references; corrected RCP+ paramete
- …