429 research outputs found

    Two-Staged Magnetoresistance Driven by Ising-like Spin Sublattice in SrCo6O11

    Full text link
    A two-staged, uniaxial magnetoresistive effect has been discovered in SrCo6O11 having a layered hexagonal structure. Conduction electrons and localized Ising spins are in different sublattices but their interpenetration makes the conduction electrons sensitively pick up the stepwise field-dependence of magnetization. The stepwise field-dependence suggests two competitive interlayer interactions between ferromagnetic Ising-spin layers, i.e., a ferromagnetic nearest-layer interaction and an antiferromagnetic next-nearest-layer interaction. This oxide offers a unique opportunity to study nontrivial interplay between conduction electrons and Ising spins, the coupling of which can be finely controlled by a magnetic field of a few Tesla.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Room-temperature ferromagnetism in Sr_(1-x)Y_xCoO_(3-delta) (0.2 < x < 0.25)

    Full text link
    We have measured magnetic susceptibility and resistivity of Sr1−x_{1-x}Yx_xCoO3−δ_{3-\delta} (x=x= 0.1, 0.15, 0.2, 0.215, 0.225, 0.25, 0.3, and 0.4), and have found that Sr1−x_{1-x}Yx_xCoO3−δ_{3-\delta} is a room temperature ferromagnet with a Curie temperature of 335 K in a narrow compositional range of 0.2 ≤x≤\leq x\leq 0.25. This is the highest transition temperature among perovskite Co oxides. The saturation magnetization for x=x= 0.225 is 0.25 μB\mu_B/Co at 10 K, which implies that the observed ferromagnetism is a bulk effect. We attribute this ferromagnetism to a peculiar Sr/Y ordering.Comment: 5 pages, 4 figure

    Transport properties of the layered Rh oxide K_0.49RhO_2

    Full text link
    We report measurements and analyses of resistivity, thermopower and Hall coefficient of single-crystalline samples of the layered Rh oxide K_0.49RhO_2. The resistivity is proportional to the square of temperature up to 300 K, and the thermopower is proportional to temperature up to 140 K. The Hall coefficient increases linearly with temperature above 100 K, which is ascribed to the triangular network of Rh in this compound. The different transport properties between Na_xCoO_2 and K_0.49RhO_2 are discussed on the basis of the different band width between Co and Rh evaluated from the magnetotransport.Comment: 3 figures, submitted to PR

    Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoTe2_2

    Full text link
    We investigate the surface electronic structures of polar 1T'-MoTe2, the Weyl semimetal candidate realized through the nonpolar-polar structural phase transition, by utilizing the laser angle-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. Two kinds of domains with different surface band dispersions are observed from a single-crystalline sample. The spin-resolved measurements further reveal that the spin polarizations of the surface and the bulk-derived states show the different domain-dependences, indicating the opposite bulk polarity. For both domains, some segment-like band features resembling the Fermi arcs are clearly observed. The patterns of the arcs present the marked contrast between the two domains, respectively agreeing well with the slab calculation of (0 0 1) and (0 0 -1) surfaces. The present result strongly suggests that the Fermi arc connects the identical pair of Weyl nodes on one side of the polar crystal surface, whereas it connects between the different pairs of Weyl nodes on the other side.Comment: 13 pages, 4 figure

    High-pressure synthesis of Ba2RhO4, a rhodate analog of the layered perovskite Sr-ruthenate

    Get PDF
    A layered perovskite-type oxide Ba2RhO4 was synthesized by a high-pressure technique with the support of convex-hull calculations. The crystal and electronic structure were studied by both experimental and computational tools. Structural refinements for powder x-ray diffraction data showed that Ba2RhO4 crystallizes in a K2NiF4-type structure, isostructural to Sr2RuO4 and Ba2IrO4. Magnetic, resistivity, and specific-heat measurements for polycrystalline samples of Ba2RhO4 indicate that the system can be characterized as a correlated metal. Despite the close similarity to its Sr2RuO4 counterpart in the electronic specific-heat coefficient and the Wilson ratio, Ba2RhO4 shows no signature of superconductivity down to 0.16 K. Whereas the Fermi surface topology has reminiscent pieces of Sr2RuO4, an electronlike eg-(dx2-y2) band descends below the Fermi level, making this compound unique also as a metallic counterpart of the spin-orbit coupled Mott insulator Ba2IrO4

    Anomalous Coexistence of Ferroelectric Phases (P∥aP\parallel a and P∥cP\parallel c) in Orthorhombic Eu1−y_{1-y}Yy_yMnO3_3 (y>0.5y>0.5) Crystals

    Full text link
    We have investigated the magnetic and dielectric properties of orthorhombic Eu1−y_{1-y}Yy_yMnO3_3 (0≤y≤0.60\leq y\leq 0.6) single crystals without the presence of the 4ff magnetic moments of the rare-earth ions. In y≥0.2y\geq 0.2, the magnetic-structure driven ferroelectricity is observed. The ferroelectric transition temperature is steeply reducing with increasing yy. In y≥0.52y\geq 0.52, two ferroelectric phases (P∥aP\parallel a and P∥cP\parallel c) are coexistent at low temperatures. In these phases, ferroelectricity has different origin, which is evidenced by the distinctive poling-electric-field dependence of electric polarization. Namely, the electric polarization along the c axis (PcP_c) is easily saturated by a poling electric field, therefore PcP_c is caused by the bcbc spiral antiferromagnetic order. On the other hand, the electric polarization along the a axis (PaP_a) is probably attributed to the collinear EE-type antiferromagnetic order, because PaP_a is unsaturated even in a poling field of 10610^6 V/m.Comment: 10 pages, 4figures, to be published in Journal of the Physical Society of Japa

    Decaying Dark Matter in Supersymmetric Model and Cosmic-Ray Observations

    Full text link
    We study cosmic-rays in decaying dark matter scenario, assuming that the dark matter is the lightest superparticle and it decays through a R-parity violating operator. We calculate the fluxes of cosmic-rays from the decay of the dark matter and those from the standard astrophysical phenomena in the same propagation model using the GALPROP package. We reevaluate the preferred parameters characterizing standard astrophysical cosmic-ray sources with taking account of the effects of dark matter decay. We show that, if energetic leptons are produced by the decay of the dark matter, the fluxes of cosmic-ray positron and electron can be in good agreements with both PAMELA and Fermi-LAT data in wide parameter region. It is also discussed that, in the case where sizable number of hadrons are also produced by the decay of the dark matter, the mass of the dark matter is constrained to be less than 200-300 GeV in order to avoid the overproduction of anti-proton. We also show that the cosmic gamma-ray flux can be consistent with the results of Fermi-LAT observation if the mass of the dark matter is smaller than nearly 4 TeV.Comment: 24 pages, 5 figure

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1−x_{1-x}Tbx_xMnO3_3 (0≤x≤10 \le x \le 1) and (Eu,Y)1−x_{1-x}Gdx_xMnO3_3 (0≤x≤0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x∼0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x∼0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa

    Pressure/temperature/substitution-induced melting of A-site charge disproportionation in Bi_(1-x)La_(x)NiO_3 (0 =< x =< 0.5)

    Full text link
    Metal-insulator transitions strongly coupled with lattice were found in Bi1-xLaxNiO3. Synchrotron X-ray powder diffraction revealed that pressure (P ~ 3 GPa, T = 300 K), temperature (T ~ 340 K, x = 0.05), and La-substitution (x ~ 0.075, T = 300 K) caused the similar structural change from a triclinic (insulating) to an orthorhombic (metallic) symmetry, suggesting melting of the A-site charge disproportionation. Comparing crystal structure and physical properties with the other ANiO3 series, an electronic state of the metallic phase can be described as [A3+Ld, Ni2+L1-d], where a ligand-hole L contributes to a conductivity. We depicted a schematic P-T phase diagram of BiNiO3 including a critical point (3 GPa, 300 K) and an inhomogeneous region, which implies universality of ligand-hole dynamics in ANiO3 (A = Bi, Pr, Nd,...).Comment: 24 pages, 8 figures, Phys. Rev. B in pres

    Measurement of the Superparticle Mass Spectrum in the Long-Lived Stau Scenario at the LHC

    Full text link
    In supersymmetric scenarios with a long-lived stau, the LHC experiments provide us with a great environment for precise mass measurements of superparticles. We study a case in which the mass differences between the lightest stau and other sleptons are about 10 GeV or larger, so that the decay products of heavier sleptons are hard enough to be detected. We demonstrate that the masses of neutralinos, sleptons, and squarks can be measured with a good accuracy.Comment: 20 pages, 6 figure
    • …
    corecore