936 research outputs found
Anomalous magnetic properties near Mott transition in Kagom\'e lattice Hubbard model
We investigate the characteristics of the metallic phase near the Mott
transition in the Kagom\'e lattice Hubbard model using the cellular dynamical
mean field theory. By calculating the specific heat and spin correlation
functions, we demonstrate that the quasiparticles show anomalous properties in
the metallic phase close to the Mott transition. We find clear evidence for the
multi-band heavy quasiparticles in the specific heat, which gives rise to
unusual temperature dependence of the spin correlation functions.Comment: 2 pages, 3 figures, accepted for publication in J. Mag. Mag. Mater.
(Proceedings of the ICM, Kyoto, Japan, August 2006
Possible Kondo resonance in PrFe4P12 studied by bulk-sensitive photoemission
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru;
X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f
resonance photoemission. A very strong spectral intensity is observed just
below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its
intensity at lower temperatures is observed. We speculate that this is the
Kondo resonance of Pr, the origin of which is attributed to the strong
hybridization between the Pr 4f and the conduction electrons.Comment: 4 pages(camera ready format), 4 figures, ReVTeX
Nonperturbative Scaling Theory of Free Magnetic Moment Phases in Disordered Metals
The crossover between a free magnetic moment phase and a Kondo phase in low
dimensional disordered metals with dilute magnetic impurities is studied.
We perform a finite size scaling analysis of the distribution of the Kondo
temperature as obtained from a numerical renormalization group calculation of
the local magnetic susceptibility and from the solution of the self-consistent
Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic
moments when the exchange coupling falls below a disorder-dependent critical
value . Our numerical results show that between the free moment
phase due to Anderson localization and the Kondo screened phase there is a
phase where free moments occur due to the appearance of random local pseudogaps
at the Fermi energy whose width and power scale with the elastic scattering
rate .Comment: 4 pages, 6 figure
Excitations in Spin Chains and Specific-Heat Anomalies in Yb(4)As(3)
An explanation is given for the observed magnetic-field dependence of the
low-temperature specific heat coefficient of Yb(4)As(3). It is based on a
recently developed model for that material which can explain the observed
heavy-fermion behaviour. According to it the Yb(3+)-ions are positioned in a
net of parallel chains with an effective spin coupling of the order of J = 25
K. The magnetic-field dependence can be understood by including a weak magnetic
coupling J' between adjacent chains. The data require a ratio J'/J of about
10^{-4}. In that case the experimental results can be reproduced very well by
the theory.Comment: 5 pages, 5 PostScript-figures, needs LaTeX2e and the graphics-packag
Finite-temperature Mott transitions in multi-orbital Hubbard model
We investigate the Mott transitions in the multi-orbital Hubbard model at
half-filling by means of the self-energy functional approach. The phase
diagrams are obtained at finite temperatures for the Hubbard model with up to
four-fold degenerate bands. We discuss how the first-order Mott transition
points and as well as the critical temperature depend
on the orbital degeneracy. It is elucidated that enhanced orbital fluctuations
play a key role to control the Mott transitions in the multi-orbital Hubbard
model.Comment: 8 pages, 7 figure
Incommensurate state in a quasi-one-dimensional bond-alternating antiferromagnet with frustration in magnetic fields
We investigate the critical properties of the bond-alternating spin
chain with a next-nearest-neighbor interaction in magnetic fields. By the
numerical calculation and the exact solution based on the effective
Hamiltonian, we show that there is a parameter region where the longitudinal
incommensurate spin correlation becomes dominant around the half-magnetization
of the saturation. Possible interpretations of our results are discussed. We
next investigate the effects of the interchain interaction (). The
staggered susceptibility and the uniform magnetization are calculated by
combining the density-matrix renormalization group method with the interchain
mean-field theory. For the parameters where the dominant longitudinal
incommensurate spin correlation appears in the case , the
staggered long-range order does not emerge up to a certain critical value of
around the half-magnetization of the saturation. We calculate the
static structure factor in such a parameter region. The size dependence of the
static structure factor at implies that the system has a
tendency to form an incommensurate long-range order around the
half-magnetization of the saturation. We discuss the recent experimental
results for the NMR relaxation rate in magnetic fields performed for
pentafluorophenyl nitronyl nitroxide.Comment: 10 pages, 12 figures, final version, to appear in PRB vol. 70, No. 5
(2004
Prominent 5d-orbital contribution to the conduction electrons in gold
We have examined the valence-band electronic structures of gold and silver in
the same column in the periodic table with nominally filled d orbitals by means
of a recently developed polarization-dependent hard x-ray photoemission.
Contrary to a common expectation, it is found that the 5d-orbital electrons
contribute prominently to the conduction electrons in gold while the conduction
electrons in silver are to some extent free-electron-like with negligible 4d
contribution, which could be related to a well-known fact that gold is more
stable than silver in air. The 4d electron correlation effects are found to be
essential for the conduction electron character in silver.Comment: 8 pages, 4 figures, to be appeared in New J. Phys
Magnetism and domain formation in SU(3)-symmetric multi-species Fermi mixtures
We study the phase diagram of an SU(3)-symmetric mixture of three-component
ultracold fermions with attractive interactions in an optical lattice,
including the additional effect on the mixture of an effective three-body
constraint induced by three-body losses. We address the properties of the
system in by using dynamical mean-field theory and variational Monte
Carlo techniques. The phase diagram of the model shows a strong interplay
between magnetism and superfluidity. In the absence of the three-body
constraint (no losses), the system undergoes a phase transition from a color
superfluid phase to a trionic phase, which shows additional particle density
modulations at half-filling. Away from the particle-hole symmetric point the
color superfluid phase is always spontaneously magnetized, leading to the
formation of different color superfluid domains in systems where the total
number of particles of each species is conserved. This can be seen as the SU(3)
symmetric realization of a more general tendency to phase-separation in
three-component Fermi mixtures. The three-body constraint strongly disfavors
the trionic phase, stabilizing a (fully magnetized) color superfluid also at
strong coupling. With increasing temperature we observe a transition to a
non-magnetized SU(3) Fermi liquid phase.Comment: 36 pages, 17 figures; Corrected typo
- …