23,807 research outputs found

    Subprime mortgages and the housing bubble

    Get PDF
    This paper explores the link between the house-price expectations of mortgage lenders and the extent of subprime lending. It argues that bubble conditions in the housing market are likely to spur subprime lending, with favorable price expectations easing the default concerns of lenders and thus increasing their willingness to extend loans to risky borrowers. Since the demand created by subprime lending feeds back onto house prices, such lending also helps to fuel an emerging housing bubble. The paper, however, focuses on the reverse causal linkage, where subprime lending is a consequence rather than a cause of bubble conditions. These ideas are illustrated in a theoretical model, and empirical work tests for a connection between price expectations and the extent of subprime lending.Subprime mortgage ; Global financial crisis

    Prediction of Characteristics of Surface Wave for Earthquake Resistant Design

    Get PDF
    Surface waves are not considered directly in the current earthquake resistant design code of the underground lineal structure, because a method for estimating the surface wave as input motion is not established. A procedure for calculating the expected value of peak ground displacement from bedrock motion is presented in this paper; the bedrock motion is converted to Love Nave spectra by the method proposed by the authors, and Love wave spectra is converted to peak ground displacement by the method proposed newly in this paper. Input motions of the underground transmission line is estimated as an example case to compare the axial forces derived by the method and by the current earthquake resistant design code of the underground transmission line. It is confirmed that the structure designed based on the current code is safe against surface waves

    Quantum Larmor radiation in conformally flat universe

    Full text link
    We investigate the quantum effect on the Larmor radiation from a moving charge in an expanding universe based on the framework of the scalar quantum electrodynamics (SQED). A theoretical formula for the radiation energy is derived at the lowest order of the perturbation theory with respect to the coupling constant of the SQED. We evaluate the radiation energy on the background universe so that the Minkowski spacetime transits to the Milne universe, in which the equation of motion for the mode function of the free complex scalar field can be exactly solved in an analytic way. Then, the result is compared with the WKB approach, in which the equation of motion of the mode function is constructed with the WKB approximation which is valid as long as the Compton wavelength is shorter than the Hubble horizon length. This demonstrates that the quantum effect on the Larmor radiation of the order e^2\hbar is determined by a non-local integration in time depending on the background expansion. We also compare our result with a recent work by Higuchi and Walker [Phys. Rev. D80 105019 (2009)], which investigated the quantum correction to the Larmor radiation from a charged particle in a non-relativistic motion in a homogeneous electric field.Comment: 12 pages, 4 figure, accepted for publication in Physical Review

    Effect of ischemia on the canine large bowel: A comparison with the small intestine

    Get PDF
    Mucosal injury caused by ischemia and reperfusion has been well documented with the small intestine, but little is known about the colon. In the present study, the effect of warm and cold ischemia on the canine colon was studied and compared to that on the small intestine. After in situ flushing, the small intestine and the colon from six beagle dogs were removed and stored for 0.5, 1.5, and 3 hr at 37°C (warm ischemia) or for 1, 6, 12, 24, 36, and 48 hr at 4°C (cold ischemia). Electrophysiology, permeability, biochemistry, and histopathology of the specimens at each ischemic period and after reperfusion in the Ussing chamber were determined. Warm and cold ischemia induced duration-dependent suppression of electrophysiology in both organs, but the colonic mucosa retained higher activity of absorptive enterocytes and cryptic cells than the small intestine. Only the colon showed increased permeability of FITC-conjugated Dextran from the mucosal surface to the submucosal layer after prolonged ischemia. Changes in adenine nucleotides and purine catabolites were not markedly different between the organs. Histopathologic abnormalities during ischemia and after reperfusion were more serious with the small intestine than with the colon. Compared to warm ischemia, hypothermia lessened or delayed these morphofunctional derangements in both organs, which became universally worsened after reperfusion. Colonic mucosa receives morphofunctional derangements from ischemia and reperfusion, but the severity of the damage was much less severe in the colon than in the small intestine

    All-order evaluation of weak measurements: --- The cases of an operator A{\bf A} which satisfies the property A2=1{\bf A}^{2}=1 ---

    Full text link
    Some exact formulae of the expectation values and probability densities in a weak measurement for an operator A{\bf A} which satisfies the property A2=1{\bf A}^{2}=1 are derived. These formulae include all-order effects of the unitary evolution due to the von-Neumann interaction. These are valid not only in the weak measurement regime but also in the strong measurement regime and tell us the connection between these two regime. Using these formulae, arguments of the optimization of the signal amplification and the signal to noise ratio are developed in two typical experimental setups.Comment: 17 pages, 10 figures (v1); Fig.3 and some typos are corrected (v2); Comments and references are added and some typos are corrected (v3

    Effects of Chemical Potential on Hadron Masses at Finite Temperature

    Full text link
    We study the effects of the chemical potential on the ρ\rho meson mass at finite temperature. Our preliminary results show that some effects are seen in the vicinity of the phase transition point. Although the signal is still too noisy to obtain conclusive physical results within limited statistics, the mass susceptibility is consistent with zero.Comment: LATTICE98(hightemp), 3 page

    Critical Line in Random Threshold Networks with Inhomogeneous Thresholds

    Full text link
    We calculate analytically the critical connectivity KcK_c of Random Threshold Networks (RTN) for homogeneous and inhomogeneous thresholds, and confirm the results by numerical simulations. We find a super-linear increase of KcK_c with the (average) absolute threshold h|h|, which approaches Kc(h)h2/(2lnh)K_c(|h|) \sim h^2/(2\ln{|h|}) for large h|h|, and show that this asymptotic scaling is universal for RTN with Poissonian distributed connectivity and threshold distributions with a variance that grows slower than h2h^2. Interestingly, we find that inhomogeneous distribution of thresholds leads to increased propagation of perturbations for sparsely connected networks, while for densely connected networks damage is reduced; the cross-over point yields a novel, characteristic connectivity KdK_d, that has no counterpart in Boolean networks. Last, local correlations between node thresholds and in-degree are introduced. Here, numerical simulations show that even weak (anti-)correlations can lead to a transition from ordered to chaotic dynamics, and vice versa. It is shown that the naive mean-field assumption typical for the annealed approximation leads to false predictions in this case, since correlations between thresholds and out-degree that emerge as a side-effect strongly modify damage propagation behavior.Comment: 18 figures, 17 pages revte

    Orbital-Order Driven Ferroelectricity and Dipolar Relaxation Dynamics in Multiferroic GaMo4_4S8_8

    Get PDF
    We present the results of broadband dielectric spectroscopy of GaMo4_4S8_8, a lacunar spinel system that recently was shown to exhibit non-canonical, orbitally-driven ferroelectricity. Our study reveals complex relaxation dynamics of this multiferroic material, both above and below its Jahn-Teller transition at TJT=47_{\textrm{JT}}=47 K. Above TJT_{\textrm{JT}}, two types of coupled dipolar-orbital dynamics seem to compete: relaxations within cluster-like regions with short-range polar order like in relaxor ferroelectrics and critical fluctuations of only weakly interacting dipoles, the latter resembling the typical dynamics of order-disorder type ferroelectrics. Below the Jahn-Teller transition, the onset of orbital order drives the system into long-range ferroelectric order and dipolar dynamics within the ferroelectric domains is observed. The coupled dipolar and orbital relaxation behavior of GaMo4_4S8_8 above the Jahn-Teller transition markedly differs from that of the skyrmion host GaV4_4S8_8, which seems to be linked to differences in the structural distortions of the two systems on the unit-cell level.Comment: 6 pages, 3 figures + Supplemental Material (2 pages, 2 figures
    corecore