2,691 research outputs found
The H\"older Inequality for KMS States
We prove a H\"older inequality for KMS States, which generalises a well-known
trace-inequality. Our results are based on the theory of non-commutative
-spaces.Comment: 10 page
Fredholm determinants and the statistics of charge transport
Using operator algebraic methods we show that the moment generating function
of charge transport in a system with infinitely many non-interacting Fermions
is given by a determinant of a certain operator in the one-particle Hilbert
space. The formula is equivalent to a formula of Levitov and Lesovik in the
finite dimensional case and may be viewed as its regularized form in general.
Our result embodies two tenets often realized in mesoscopic physics, namely,
that the transport properties are essentially independent of the length of the
leads and of the depth of the Fermi sea.Comment: 30 pages, 2 figures, reference added, credit amende
Laboratory Measurement of the Pure Rotational Transitions of the HCNH+ and its Isotopic Species
The pure rotational transitions of the protonated hydrogen cyanide ion,
HCNH+, and its isotopic species, HCND+ and DCND+, were measured in the 107 -
482 GHz region with a source modulated microwave spectrometer. The ions were
generated in the cell with a magnetically confined dc-glow discharge of HCN
and/or DCN. The rotational constant B0 and the centrifugal distortion constant
D0 for each ion were precisely determined by a least-squares fitting to the
observed spectral lines. The observed rotational transition frequencies by
laboratory spectroscopy and the predicted ones are accurate in about 30 to 40
kHz and are useful as rest frequencies for astronomical searches of HCNH+ and
HCND+.Comment: 14 pages in TeX, 1 figures in JPE
Gauge theory in deformed N=(1,1) superspace
We review the non-anticommutative Q-deformations of N=(1,1) supersymmetric
theories in four-dimensional Euclidean harmonic superspace. These deformations
preserve chirality and harmonic Grassmann analyticity. The associated field
theories arise as a low-energy limit of string theory in specific backgrounds
and generalize the Moyal-deformed supersymmetric field theories. A
characteristic feature of the Q-deformed theories is the half-breaking of
supersymmetry in the chiral sector of the Euclidean superspace. Our main focus
is on the chiral singlet Q-deformation, which is distinguished by preserving
the SO(4) Spin(4) ``Lorentz'' symmetry and the SU(2) R-symmetry. We present the
superfield and component structures of the deformed N=(1,0) supersymmetric
gauge theory as well as of hypermultiplets coupled to a gauge superfield:
invariant actions, deformed transformation rules, and so on. We discuss quantum
aspects of these models and prove their renormalizability in the abelian case.
For the charged hypermultiplet in an abelian gauge superfield background we
construct the deformed holomorphic effective action.Comment: 1+60 pages, typos corrected, references adde
Supernova Neutrino Oscillations
Observing a high-statistics neutrino signal from a galactic supernova (SN)
would allow one to test the standard delayed explosion scenario and may allow
one to distinguish between the normal and inverted neutrino mass ordering due
to the effects of flavor oscillations in the SN envelope. One may even observe
a signature of SN shock-wave propagation in the detailed time-evolution of the
neutrino spectra. A clear identification of flavor oscillation effects in a
water Cherenkov detector probably requires a megatonne-class experiment.Comment: Proc. 129 Nobel Symposium "Neutrino Physics", 19-24 Aug 2004, Swede
One-loop divergences in the two-dimensional non-anticommutative supersymmetric sigma-model
We discuss the structure of the non-anticommutative N=2 non-linear
sigma-model in two dimensions, constructing differential operators which
implement the deformed supersymmetry generators and using them to reproduce the
classical action. We then compute the one-loop quantum corrections and express
them in a more compact form using the differential operators.Comment: 20pp, 8 figures, uses LaTeX. Title expanded to clarify conten
Ionization Potential of the Helium Atom
Ground state ionization potential of the He^4 atom is evaluated to be 5 945
204 221 (42) MHz. Along with lower order contributions, this result includes
all effects of the relative orders alpha^4, alpha^3*m_e/m_alpha and
alpha^5*ln^2(alpha).Comment: 4 page
Evaluations on underdetermined blind source separation in adverse environments using time-frequency masking
The successful implementation of speech processing systems in the real world depends on its ability to handle adverse acoustic conditions with undesirable factors such as room reverberation and background noise. In this study, an extension to the established multiple sensors degenerate unmixing estimation technique (MENUET) algorithm for blind source separation is proposed based on the fuzzy c-means clustering to yield improvements in separation ability for underdetermined situations using a nonlinear microphone array. However, rather than test the blind source separation ability solely on reverberant conditions, this paper extends this to include a variety of simulated and real-world noisy environments. Results reported encouraging separation ability and improved perceptual quality of the separated sources for such adverse conditions. Not only does this establish this proposed methodology as a credible improvement to the system, but also implies further applicability in areas such as noise suppression in adverse acoustic environments
Fermi-Surface Reconstruction in the Periodic Anderson Model
We study ground state properties of periodic Anderson model in a
two-dimensional square lattice with variational Monte Carlo method. It is shown
that there are two different types of quantum phase transition: a conventional
antiferromagnetic transition and a Fermi-surface reconstruction which
accompanies a change of topology of the Fermi surface. The former is induced by
a simple back-folding of the Fermi surface while the latter is induced by
localization of electrons. The mechanism of these transitions and the
relation to the recent experiments on Fermi surface are discussed in detail.Comment: 8 pages, 7 figures, submitted to Journal of the Physical Society of
Japa
New Superconducting and Magnetic Phases Emerge on the Verge of Antiferromagnetism in CeIn
We report the discovery of new superconducting and novel magnetic phases in
CeIn on the verge of antiferromagnetism (AFM) under pressure () through
the In-nuclear quadrupole resonance (NQR) measurements. We have found a
-induced phase separation of AFM and paramagnetism (PM) without any trace
for a quantum phase transition in CeIn. A new type of superconductivity
(SC) was found in GPa to coexist with AFM that is magnetically
separated from PM where the heavy fermion SC takes place. We propose that the
magnetic excitations such as spin-density fluctuations induced by the
first-order magnetic phase transition might mediate attractive interaction to
form Cooper pairs.Comment: 4 pages, 4 EPS figures, submitted to J. Phys. Soc. Jp
- âŠ