68,754 research outputs found
Density oscillations in trapped dipolar condensates
We investigated the ground state wave function and free expansion of a
trapped dipolar condensate. We find that dipolar interaction may induce both
biconcave and dumbbell density profiles in, respectively, the pancake- and
cigar-shaped traps. On the parameter plane of the interaction strengths, the
density oscillation occurs only when the interaction parameters fall into
certain isolated areas. The relation between the positions of these areas and
the trap geometry is explored. By studying the free expansion of the condensate
with density oscillation, we show that the density oscillation is detectable
from the time-of-flight image.Comment: 7 pages, 9 figure
Is GRO J1744-28 a Strange Star?
The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton
Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar
magnetic field Gauss. When the accreted mass of the star exceeds
some critical mass, its crust may break, resulting in conversion of the
accreted matter into strange matter and release of energy. Subsequently, a
fireball may form and expand relativistically outward. The expanding fireball
may interact with the surrounding interstellar medium, causing its kinetic
energy to be radiated in shock waves, producing a burst of x-ray radiation. The
burst energy, duration, interval and spectrum derived from such a model are
consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40
Vertical field-effect transistors in III-V semiconductors
Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed
Beaming Effects in Gamma-Ray Bursts
Based on a refined generic dynamical model, we investigate afterglows from
jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase,
the light curve break could marginally be seen. However, an obvious break does
exist at the transition from the relativistic phase to the non-relativistic
phase, which typically occurs at time 10 to 30 days. It is very interesting
that the break is affected by many parameters, especially by the electron
energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication
of orphan afterglow surveys on GRB beaming is investigated. The possible
existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at
the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July
11-17, 2002). A slightly revised version will appear in the proceeding
Molecular electronics exploiting sharp structure in the electrode density-of-states. Negative differential resistance and Resonant Tunneling in a poled molecular layer on Al/LiF electrodes
Density-functional calculations are used to clarify the role of an ultrathin
LiF layer on Al electrodes used in molecular electronics. The LiF layer creates
a sharp density of states (DOS), as in a scanning-tunneling microscope (STM)
tip. The sharp DOS, coupled with the DOS of the molecule leads to negative
differential resistance (NDR). Electron transfer between oriented molecules
occurs via resonant tunneling. The I-V characteristic for a thin-film of tris
(8-hydroxyquinoline)- aluminum (AlQ) molecules, oriented using electric-field
poling, and sandwiched between two Al/LiF electrodes is in excellent agreement
with theory. This molecular device presents a new paradigm for a convenient,
robust, inexpensive alternative to STM or mechanical break-junction structures.Comment: 5 pages, 3 figure
Point-charge electrostatics in disordered alloys
A simple analytic model of point-ion electrostatics has been previously
proposed in which the magnitude of the net charge q_i on each atom in an
ordered or random alloy depends linearly on the number N_i^(1) of unlike
neighbors in its first coordination shell. Point charges extracted from recent
large supercell (256-432 atom) local density approximation (LDA) calculations
of Cu-Zn random alloys now enable an assessment of the physical validity and
accuracy of the simple model. We find that this model accurately describes (i)
the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes
of total electrostatic energies in random alloys, (iii) the relationships
between constant-occupation-averaged charges and Coulomb shifts
(i.e., the average over all sites occupied by either or atoms) in the
random alloy, and (iv) the linear relation between the site charge q_i and the
constant- charge-averaged Coulomb shift (i.e., the average over all sites with
the same charge) for fcc alloys. However, for bcc alloys the fluctuations
predicted by the model in the q_i vs. V_i relation exceed those found in the
LDA supercell calculations. We find that (a) the fluctuations present in the
model have a vanishing contribution to the electrostatic energy. (b)
Generalizing the model to include a dependence of the charge on the atoms in
the first three (two) shells in bcc (fcc) - rather than the first shell only -
removes the fluctuations, in complete agreement with the LDA data. We also
demonstrate an efficient way to extract charge transfer parameters of the
generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig,
to be published in Phys. Rev.
Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock
Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic
winds/fireballs to avoid the "compactness problem". However, the most energetic
photons in GRBs may still suffer from absorption leading to
electron/positron pair production in the winds/fireballs. We show here that in
a wide range of model parameters, the resulting pairs may dominate those
electrons associated with baryons. Later on, the pairs would be carried into a
reverse shock so that a shocked pair-rich fireball may produce a strong flash
at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission
from a pair-poor fireball. The IR emission would show a 5/2 spectral index due
to strong self-absorption. Rapid responses to GRB triggers in the IR band would
detect such strong flashes. The future detections of many IR flashes will infer
that the rarity of prompt optical/UV emissions is in fact due to dust
obscuration in the star formation regions.Comment: 8 pages, 2 figures, ApJ accepte
- …