68,754 research outputs found

    Density oscillations in trapped dipolar condensates

    Full text link
    We investigated the ground state wave function and free expansion of a trapped dipolar condensate. We find that dipolar interaction may induce both biconcave and dumbbell density profiles in, respectively, the pancake- and cigar-shaped traps. On the parameter plane of the interaction strengths, the density oscillation occurs only when the interaction parameters fall into certain isolated areas. The relation between the positions of these areas and the trap geometry is explored. By studying the free expansion of the condensate with density oscillation, we show that the density oscillation is detectable from the time-of-flight image.Comment: 7 pages, 9 figure

    Is GRO J1744-28 a Strange Star?

    Get PDF
    The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar magnetic field 1011\le 10^{11} Gauss. When the accreted mass of the star exceeds some critical mass, its crust may break, resulting in conversion of the accreted matter into strange matter and release of energy. Subsequently, a fireball may form and expand relativistically outward. The expanding fireball may interact with the surrounding interstellar medium, causing its kinetic energy to be radiated in shock waves, producing a burst of x-ray radiation. The burst energy, duration, interval and spectrum derived from such a model are consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40

    Vertical field-effect transistors in III-V semiconductors

    Get PDF
    Vertical metal-semiconductor field-effect transistors in GaAs/GaAlAs and vertical metal-oxide-semiconductor field-effect transistors (MOSFET's) in InP/GaInPAs materials have been fabricated. These structures make possible short channel devices with gate lengths defined by epitaxy rather than by submicron photolithography processes. Devices with transconductances as high as 280 mS/mm in GaAs and 60 mS/mm (with 100-nm gate oxide) for the InP/GaInPAs MOSFET's were observed

    Beaming Effects in Gamma-Ray Bursts

    Get PDF
    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). A slightly revised version will appear in the proceeding

    Molecular electronics exploiting sharp structure in the electrode density-of-states. Negative differential resistance and Resonant Tunneling in a poled molecular layer on Al/LiF electrodes

    Full text link
    Density-functional calculations are used to clarify the role of an ultrathin LiF layer on Al electrodes used in molecular electronics. The LiF layer creates a sharp density of states (DOS), as in a scanning-tunneling microscope (STM) tip. The sharp DOS, coupled with the DOS of the molecule leads to negative differential resistance (NDR). Electron transfer between oriented molecules occurs via resonant tunneling. The I-V characteristic for a thin-film of tris (8-hydroxyquinoline)- aluminum (AlQ) molecules, oriented using electric-field poling, and sandwiched between two Al/LiF electrodes is in excellent agreement with theory. This molecular device presents a new paradigm for a convenient, robust, inexpensive alternative to STM or mechanical break-junction structures.Comment: 5 pages, 3 figure

    Point-charge electrostatics in disordered alloys

    Full text link
    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either AA or BB atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. However, for bcc alloys the fluctuations predicted by the model in the q_i vs. V_i relation exceed those found in the LDA supercell calculations. We find that (a) the fluctuations present in the model have a vanishing contribution to the electrostatic energy. (b) Generalizing the model to include a dependence of the charge on the atoms in the first three (two) shells in bcc (fcc) - rather than the first shell only - removes the fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge transfer parameters of the generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig, to be published in Phys. Rev.

    Pair loading in Gamma-Ray Burst Fireball And Prompt Emission From Pair-Rich Reverse Shock

    Full text link
    Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic winds/fireballs to avoid the "compactness problem". However, the most energetic photons in GRBs may still suffer from γγ\gamma-\gamma absorption leading to electron/positron pair production in the winds/fireballs. We show here that in a wide range of model parameters, the resulting pairs may dominate those electrons associated with baryons. Later on, the pairs would be carried into a reverse shock so that a shocked pair-rich fireball may produce a strong flash at lower frequencies, i.e. in the IR band, in contrast with optical/UV emission from a pair-poor fireball. The IR emission would show a 5/2 spectral index due to strong self-absorption. Rapid responses to GRB triggers in the IR band would detect such strong flashes. The future detections of many IR flashes will infer that the rarity of prompt optical/UV emissions is in fact due to dust obscuration in the star formation regions.Comment: 8 pages, 2 figures, ApJ accepte
    corecore