78,042 research outputs found
Residential relocation in response to light rail transit investment: case study of the Hudson-Bergen Light Rail system
© 2016, The Author(s).It is widely acknowledged that the improved accessibility enabled by investment in public transport services can, under favorable market conditions, impact the local real estate market within the zone of influence of the service’s stations. The motivation for this study is to establish the nature of two such impacts, specifically the spatial and socio-economic patterns of residential relocations that are driven by the new light rail transit (LRT) service. Using empirical data (n = 1,023) from the Hudson–Bergen Light Rail system in New Jersey (US), we report findings regarding the impacts of the introduction of the new LRT service. We investigate two linked dimensions; the first is the distinctive socio-economic profile of LRT passengers who self-report having relocated to the new transit corridor due, at least in part, to the new transit service. The second is their proximity (following their residential relocation) to the new LRT line’s stations. We present a novel analysis that accounts for endogeneity between these two dimensions of residential relocation. Of light rail passengers who engaged in a residential relocation in the 5 years prior to the survey, two-thirds (69 %) indicate that proximity to the light rail service was a ‘somewhat’ or ‘very’ important consideration. Via the multivariate analysis, we demonstrate that small household size, low income, youth (as opposed to older age), and low car ownership are each positively linked, ceteris paribus, with having engaged in a residential relocation motivated by the new transit service. Finally, higher household income is found to be associated with distance (after relocation) to the nearest transit station, which is consistent with bid-rent theory
Superconductivity-induced Phonon Renormalization on NaFeCoAs
We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8
K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of
the six phonon modes expected from group theory are observed. In contrast with
results obtained on iso-structural and iso-electronic LiFeAs, anomalous
broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both
samples. In addition, in the Co-doped sample, a superconductivity-induced
renormalization of the frequency and linewidth of the B1g(Fe) vibration is
observed. This renormalization can not be understood within a single band and
simple multi-band approaches. A theoretical model that includes the effects of
SDW correlations along with sign-changing s-wave pairing state and interband
scattering has been developed to explain the observed behavior of the B1g(Fe)
mode.Comment: 10 pages; 6 figure
Freezing Transition in Decaying Burgers Turbulence and Random Matrix Dualities
We reveal a phase transition with decreasing viscosity at \nu=\nu_c>0
in one-dimensional decaying Burgers turbulence with a power-law correlated
random profile of Gaussian-distributed initial velocities
\sim|x-x'|^{-2}. The low-viscosity phase exhibits non-Gaussian
one-point probability density of velocities, continuously dependent on \nu,
reflecting a spontaneous one step replica symmetry breaking (RSB) in the
associated statistical mechanics problem. We obtain the low orders cumulants
analytically. Our results, which are checked numerically, are based on
combining insights in the mechanism of the freezing transition in random
logarithmic potentials with an extension of duality relations discovered
recently in Random Matrix Theory. They are essentially non mean-field in nature
as also demonstrated by the shock size distribution computed numerically and
different from the short range correlated Kida model, itself well described by
a mean field one step RSB ansatz. We also provide some insights for the finite
viscosity behaviour of velocities in the latter model.Comment: Published version, essentially restructured & misprints corrected. 6
pages, 5 figure
Expressive Stream Reasoning with Laser
An increasing number of use cases require a timely extraction of non-trivial
knowledge from semantically annotated data streams, especially on the Web and
for the Internet of Things (IoT). Often, this extraction requires expressive
reasoning, which is challenging to compute on large streams. We propose Laser,
a new reasoner that supports a pragmatic, non-trivial fragment of the logic
LARS which extends Answer Set Programming (ASP) for streams. At its core, Laser
implements a novel evaluation procedure which annotates formulae to avoid the
re-computation of duplicates at multiple time points. This procedure, combined
with a judicious implementation of the LARS operators, is responsible for
significantly better runtimes than the ones of other state-of-the-art systems
like C-SPARQL and CQELS, or an implementation of LARS which runs on the ASP
solver Clingo. This enables the application of expressive logic-based reasoning
to large streams and opens the door to a wider range of stream reasoning use
cases.Comment: 19 pages, 5 figures. Extended version of accepted paper at ISWC 201
Competing interactions in artificial spin chains
The low-energy magnetic configurations of artificial frustrated spin chains
are investigated using magnetic force microscopy and micromagnetic simulations.
Contrary to most studies on two-dimensional artificial spin systems where
frustration arises from the lattice geometry, here magnetic frustration
originates from competing interactions between neighboring spins. By tuning
continuously the strength and sign of these interactions, we show that
different magnetic phases can be stabilized. Comparison between our
experimental findings and predictions from the one-dimensional Anisotropic
Next-Nearest-Neighbor Ising (ANNNI) model reveals that artificial frustrated
spin chains have a richer phase diagram than initially expected. Besides the
observation of several magnetic orders and the potential extension of this work
to highly-degenerated artificial spin chains, our results suggest that the
micromagnetic nature of the individual magnetic elements allows observation of
metastable spin configurations.Comment: 5 pages, 4 figure
Spin Frustration and Orbital Order in Vanadium Spinels
We present the results of our theoretical study on the effects of geometrical
frustration and the interplay between spin and orbital degrees of freedom in
vanadium spinel oxides VO ( = Zn, Mg or Cd). Introducing an
effective spin-orbital-lattice coupled model in the strong correlation limit
and performing Monte Carlo simulation for the model, we propose a reduced spin
Hamiltonian in the orbital ordered phase to capture the stabilization mechanism
of the antiferromagnetic order. Orbital order drastically reduces spin
frustration by introducing spatial anisotropy in the spin exchange
interactions, and the reduced spin model can be regarded as weakly-coupled
one-dimensional antiferromagnetic chains. The critical exponent estimated by
finite-size scaling analysis shows that the magnetic transition belongs to the
three-dimensional Heisenberg universality class. Frustration remaining in the
mean-field level is reduced by thermal fluctuations to stabilize a collinear
ordering.Comment: 4 pages, 4 figures, proceedings submitted to SPQS200
Simulation of MeV/atom cluster correlations in matter
We present an efficient algorithm able to predict the trajectories of individual cluster constituents as they penetrate relatively thick amorphous targets. Our algorithm properly treats both the intracluster Coulomb repulsion and the collisions between cluster constituents and target atoms. We have compared our simulation predictions to experimental measurements of the distribution of lateral exit velocities, and demonstrated that the in-target Coulomb explosion of 2MeV/atom carbon clusters in carbon foils must be shielded with a screening length of less than 2.5 Å. We also present a simple phenomenological model for the suppression of the exit-side charge of ions in clusters which depends on the enhanced ionization potential that an electron near an ion feels due to the ion’s charged comoving neighbors. By using our simulation algorithm we have predicted the exit correlations of the cluster constituents and verified that the charge suppression model fits the observed charge suppression of ions in clusters to within the experimental uncertainties
Raman Scattering Study of the Lattice Dynamics of Superconducting LiFeAs
We report an investigation of the lattice dynamical properties of LiFeAs
using inelastic light scattering. Five out of the six expected phonon modes are
observed. The temperature evolution of their frequencies and linewidths is in
good agreement with an anharmonic-decay model. We find no evidence for
substantial electron-phonon coupling, and no superconductivity-induced phonon
anomalies.Comment: 5 pages, 3 figures, 1 tabl
- …