2,582 research outputs found

    Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Full text link
    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of black hole approach to the order of Planck scale, it stops radiating and leads to black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomenons imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at LHC, the results demonstrate that the black hole can not be produced in the recent LHC.Comment: 12 pages, 6 figure

    Optical and magnetic properties of Ni nanoparticles in rutile formed by Ni ion implantation

    Full text link
    Crystalline Ni nanoparticles in the near surface of TiO2TiO2 (rutile) have been synthesized by Ni ion beam implantation at room temperature to a fluence of 1×1017/cm21×1017∕cm2. Transmission electron microscopy, optical absorption spectroscopy, and a superconducting quantum interference device magnetometer have been utilized to characterize the nanostructure, optical and magnetic properties of Ni particles in TiO2TiO2. Crystalline Ni nanoparticles with dimensions ranging 3–20 nm formed in the near surface of rutile, which caused a broad absorption band from 700 nm in the optical absorption spectrum. Magnetic measurement indicated that the coercive force of Ni nanoparticles was about 210 Oe at 10 K. The superparamagnetism of the nanoparticles was observed above blocking temperature T = 85 KT=85K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87774/2/043107_1.pd

    State-independent experimental test of quantum contextuality in an indivisible system

    Full text link
    We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlights quantum contextuality in its most basic form, in a way that is independent of either the state or the tensor product structure of the system

    Hawking radiation of Dirac particles via tunneling from Kerr black hole

    Full text link
    We investigated Dirac Particles' Hawking radiation from event horizon of Kerr black hole in terms of the tunneling formalism. Applying WKB approximation to the general covariant Dirac equation in Kerr spacetime background, we obtain the tunneling probability for fermions and Hawking temperature of Kerr black hole. The result obtained by taking the fermion tunneling into account is consistent with the previous literatures.Comment: 7 pages, no figures, to appear in CQ

    Optical properties and structure characterization of sapphire after Ni ion implantation and annealing

    Full text link
    Implantation of 64 keV64keV Ni ions to sapphire was conducted at room temperature to 1×1017 ions/cm21×1017ions∕cm2 with a current density of 55 or 10 μA/cm210μA∕cm2. Metallic Ni nanoparticles were formed with the 5 μA/cm25μA∕cm2 ion current and the NiAl2O4NiAl2O4 compound was formed with the 10 μA/cm210μA∕cm2 ion current. The crystals implanted with both current densities were annealed isochronally for 1 h1h at temperatures up to 1000 °C1000°C in steps of 100 °C100°C in an ambient atmosphere. Optical absorption spectroscopy, x-ray diffraction, transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy have been utilized to characterize the samples. The surface plasmon resonance (SPR) absorption band peaked at 400 nm400nm due to the Ni nanoparticles shifted toward the longer wavelength gradually with the annealing temperature increasing from 400 to 700 °C400to700°C. The SPR absorption band disappeared after the annealing temperature reached 800 °C800°C. NiO nanoparticles were formed at the expense of Ni nanoparticles with an increasing annealing temperature. The TEM analyses revealed that the nanoparticles grew to 6–20 nm6–20nm and migrated toward the surface after annealing at 900 °C900°C. The absorption band at 430 nm430nm from Ni2+Ni2+ cations in NiAl2O4NiAl2O4 did not shift with the increasing annealing temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87389/2/073524_1.pd

    Nanodomains of pyrochlore formed by Ti ion implantation in yttria-stabilized zirconia

    Full text link
    The microstructural evolution of a single crystal of yttria-stabilized zirconia (YSZ) implanted with Ti has been studied by cross-sectional transmission electron microscopy (TEM). The implantation of 180 keV Ti ions to a dose of 1×1017 ions/cm21×1017ions/cm2 was completed at room temperature. After annealing at 1100 °C in an Ar atmosphere for 2 h, a phase transition from the fluorite structure of ZrO2ZrO2 to an isometric pyrochlore structure-type, A2B2O7,A2B2O7, occurred due to cation ordering. High-resolution TEM revealed nanodomains of pyrochlore, Y2(TixZr1−x)2O7,Y2(TixZr1−x)2O7, with a ≅ 10.24±0.05 Å.a≅10.24±0.05Å. The nanodomains of the pyrochlore phase, embedded within the YSZ fluorite substrate, occurred in a depth range from 45 to 105 nm below the surface, which corresponds to Ti concentrations from ∼10 to ∼15 at. %. The nanoscale pyrochlore precipitates and the YSZ matrix have a completely coherent orientation. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70072/2/APPLAB-80-23-4327-1.pd

    Ultrahigh oxygen evolution reaction activity in Au doped co-based nanosheets

    Full text link
    Oxygen evolution reaction (OER) has attracted enormous interest as a key process for water electrolysis over the past years. The advance of this process relies on an effective catalyst. Herein, we employed single-atom Au doped Co-based nanosheets (NSs) to theoretically and experimentally evaluate the OER activity and also the interaction between Co and Au. We reveal that Au-Co(OH)2 NSs achieved a low overpotential of 0.26 V at 10 mA cm_2. This extraordinary phenomenon presents an overall superior performance greater than state-of-the-art Co-based catalysts in a sequence of a-Co(OH)2 < Co3O4 < CoOOH < Au-Co(OH)2. With ab initio calculations and analysis in the specific Au-Co(OH)2 configuration, we reveal that OER on highly active Au-Co(OH)2 originates from lattice oxygen, which is different from the conventional adsorbate evolution scheme. Explicitly, the configuration of Au-Co(OH)2 gives rise to oxygen non-bonding (ONB) states and oxygen holes, allowing direct O-O bond formation by a couple of oxidized oxygen with oxygen holes, offering a high OER activity. This study provides new insights for elucidating the origins of activity and synthesizing efficient OER electrocatalysts

    Photoluminescence of SnO2 nanoparticles embedded in Al2O3

    Full text link
    "Tetragonal Sn nanoparticles of [?]15 nm diameter are produced in Al2O3 by direct Sn implantation at room temperature. After thermal annealing at 1000 degC in oxygen, the implantation-induced amorphous region recrystallized and the Sn nanoparticles turned into SnO2 nanoparticles with an average diameter of [?]30 nm as revealed by transmission electron microscopy. While no absorption and photoluminescence (PL) are observed from the metallic Sn nanoparticles, SnO2 nanoparticles exhibit an absorption edge at [?]280 nm and three emission bands at 410 nm, 520 nm and 700 nm, respectively. In addition to the previously reported blue and green emission from SnO2 nanostructures, a red PL band was observed due to the unique surface state of SnO2 nanoparticles embedded in Al2O3 substrate fabricated by ion implantation."http://deepblue.lib.umich.edu/bitstream/2027.42/64215/1/d8_22_225102.pd

    A Necessary And Sufficient Condition of Distillability with unite fidelity from Finite Copies of a Mixed State: The Most Efficient Purification Protocol

    Full text link
    It is well known that any entangled mixed state in 2⊗22\otimes 2 systems can be purified via infinite copies of the mixed state. But can one distill a pure maximally entangled state from finite copies of a mixed state in any bipartite system by local operation and classical communication? This is more meaningful in practical application. We give a necessary and sufficient condition of this distillability. This condition can be expressed as: there exists distillable-subspaces. According to this condition, one can judge whether a mixed state is distillable or not easily. We also analyze some properties of distillable-subspaces, and discuss the most efficient purification protocols. Finally, we discuss the distillable enanglement of two-quibt system for the case of finite copies.Comment: a revised versio
    • …
    corecore