92,838 research outputs found
A Memristor Model with Piecewise Window Function
In this paper, we present a memristor model with piecewise window function, which is continuously differentiable and consists of three nonlinear pieces. By introducing two parameters, the shape of this window function can be flexibly adjusted to model different types of memristors. Using this model, one can easily obtain an expression of memristance depending on charge, from which the numerical value of memristance can be readily calculated for any given charge, and eliminate the error occurring in the simulation of some existing window function models
Modeling the Flux-Charge Relation of Memristor with Neural Network of Smooth Hinge Functions
The memristor was proposed to characterize the flux-charge relation. We propose the generalized flux-charge relation model of memristor with neural network of smooth hinge functions. There is effective identification algorithm for the neural network of smooth hinge functions. The representation capability of this model is theoretically guaranteed. Any functional flux-charge relation of a memristor can be approximated by the model. We also give application examples to show that the given model can approximate the flux-charge relation of existing piecewise linear memristor model, window function memristor model, and a physical memristor device
A Phone Learning Model for Enhancing Productivity of Visually Impaired Civil Servants
Phone-based learning in civil service is the use of voice technologies to deliver learning and capacity building training services to
government employees. The Internet revolution and advancement in Information and Communications Technology (ICT) have given rise
to online and remote staff training for the purpose of enhancing workers productivity. The need for civil servants in Nigeria to develop
capacity that will enhance knowledge is a key requirement to having competitive advantage in the work place. Existing online learning
platforms (such as web-based learning, mobile learning, etc) did not consider the plight of the visually impaired. These platforms provide
graphical interfaces that require sight to access. The visually impaired civil servants require auditory access to functionalities that exist in
learning management system on the Internet. Thus a gap exist between the able-bodied and visually impaired civil servants on
accessibility to e-learning platform. The objective of this paper is to provide a personalized telephone learning model and a prototype
application that will enhance the productivity of the visually impaired workers in Government establishments in Nigeria. The model was
designed using Unified Modeling Language (UML) diagram. The prototype application was implemented and evaluated. With the
proposed model and application, the visually and mobility impaired worker are able to participate in routine staff training and
consequently enhances their productivity just like their able-bodied counterparts. The prototype application also serves as an alternative
training platform for the able-bodied workers. Future research direction for this study will include biometric authentication of learners
accessing the applicatio
Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion
To account for the phenomenon of quantum decoherence of a macroscopic object,
such as the localization and disappearance of interference, we invoke the
adiabatic quantum entanglement between its collective states(such as that of
the center-of-mass (C.M)) and its inner states based on our recent
investigation. Under the adiabatic limit that motion of C.M dose not excite the
transition of inner states, it is shown that the wave function of the
macroscopic object can be written as an entangled state with correlation
between adiabatic inner states and quasi-classical motion configurations of the
C.M. Since the adiabatic inner states are factorized with respect to each parts
composing the macroscopic object, this adiabatic separation can induce the
quantum decoherence. This observation thus provides us with a possible solution
to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur
Modeling the AgInSbTe Memristor
The AgInSbTe memristor shows gradual resistance tuning characteristics, which makes it a potential candidate to emulate biological plastic synapses. The working mechanism of the device is complex, and both intrinsic charge-trapping mechanism and extrinsic electrochemical metallization effect are confirmed in the AgInSbTe memristor. Mathematical model of the AgInSbTe memristor has not been given before. We propose the flux-voltage controlled memristor model. With piecewise linear approximation technique, we deliver the flux-voltage controlled memristor model of the AgInSbTe memristor based on the experiment data. Our model fits the data well. The flux-voltage controlled memristor model and the piecewise linear approximation method are also suitable for modeling other kinds of memristor devices based on experiment data
- …