9,859 research outputs found

    Identified Hadrons and Jet Chemistry for p+p and Au+Au Collisions at RHIC

    Full text link
    The study of hadron spectra at high pTp_{T} in p+p collisions provides a good test of perturbative quantum chromo-dynamic calculations (pQCD) and baseline for measurements of nuclear modification factors in Au+Au collisions. Using events triggered by the Barrel Electro-Magnetic Calorimeter, identified charged hadron transverse momentum (pTp_T) spectra are measured up to 15 GeV/cc at mid-rapidity (y\mid y\mid << 0.5) and neutral kaon pTp_T spectra up to 12 GeV/cc in p + p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The particle ratios of p/π+p/\pi^{+}, pˉ/π\bar{p}/\pi^{-} and K±,0K^{\pm,0} / π±\pi^{\pm} in p + p collisions are shown and compared with next-to-leading order pQCD calculations. In central Au+Au collisions, we report nuclear modification factors (RAAR_{AA}) for pion, kaon, proton and ρ\rho and discuss several model calculations: color-charge dependence of jet quenching and jet conversion. Finally, centrality dependence of RAAR_{AA} at high pTp_T (>> 5.5 GeV/c) for kaon are compared with that of pion in Au + Au collisions at 200 GeV.Comment: 6 pages, 4 figures, SQM 2009 contributio

    Hadron widths in mixed-phase matter

    Get PDF
    We derive classically an expression for a hadron width in a two-phase region of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons larger widths than they would have in a pure hadron gas. We find that the ϕ\phi width observed in a central Au+Au collision at s=200\sqrt{s}=200 GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part of observed hadron widths due to QGP is approximately proportional to (dN/dy)1/3(dN/dy)^{-1/3}.Comment: 8 pages, latex, no figures, KSUCNR-002-9

    Transverse Fresnel-Fizeau drag effects in strongly dispersive media

    Full text link
    A light beam normally incident upon an uniformly moving dielectric medium is in general subject to bendings due to a transverse Fresnel-Fizeau light drag effect. In conventional dielectrics, the magnitude of this bending effect is very small and hard to detect. Yet, it can be dramatically enhanced in strongly dispersive media where slow group velocities in the m/s range have been recently observed taking advantage of the electromagnetically induced transparency (EIT) effect. In addition to the usual downstream drag that takes place for positive group velocities, we predict a significant anomalous upstream drag to occur for small and negative group velocities. Furthermore, for sufficiently fast speeds of the medium, higher order dispersion terms are found to play an important role and to be responsible for peculiar effects such as light propagation along curved paths and the restoration of the spatial coherence of an incident noisy beam. The physics underlying this new class of slow-light effects is thoroughly discussed

    Structural properties in Sr0.61a0.39Nb2O6 in the temperature range 10 K to 500 K investigated by high-resolution neutron powder diffraction and specific heat measurements

    Full text link
    We report high-resolution neutron powder diffraction on Sr0.61Ba0.39Nb2O6, SBN61, in the temperature range 15-500 K. The results indicate that the low-temperature anomalies (T<100K) observed in the dielectric dispersion are due to small changes in the incommensurate modulation of the NbO6-octahedra, as no structural phase transition of the average structure was observed. This interpretation is supported by specific heat measurements, which show no latent heat, but a glass-like behavior at low temperatures. Furthermore we find that the structural changes connected with the ferroelectric phase transition at Tc approx. 350K start already at 200K, explaining the anisotropic thermal expansion in the temperature range 200-300K observed in a recent x-ray diffraction study.Comment: Accepted by PRB (2006

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Prospects for detection of Υ(1D)Υ(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi via Υ(3S)Υ(1D)+X\Upsilon(3S) \to \Upsilon(1D) + X

    Full text link
    At least one state in the first family of D-wave bbˉb \bar b quarkonium levels has been discovered near the predicted mass of 10.16 GeV/c2c^2. This state is probably the one with J=2. This state and the ones with J=1 and J=3 may contribute a detectable amount to the decay Υ(1D)Υ(1S)ππ\Upsilon(1D) \to \Upsilon(1S) \pi \pi, depending on the partial widths for these decays for which predictions vary considerably. The prospects for detection of the chain Υ(3S)Υ(1D)+XΥππ+X\Upsilon(3S) \to \Upsilon(1D) + X \to \Upsilon \pi \pi + X are discussed.Comment: 4 pages, LaTeX, 1 figure, to be published in Phys. Rev. D, comment added after Eq. (2

    Kaon versus Antikaon Production at SIS Energies

    Get PDF
    We analyse the production and propagation of kaons and antikaons in Ni + Ni reactions from 0.8--1.85 GeV/u within a coupled channel transport approach including the channels BBK+YN,πBK+Y,BBNNKKˉ,πBNKKˉ,K+BK+B,KˉBKˉB,YNKˉNN,ππKKˉBB \to K^+YN, \pi B\to K^+Y, BB \to NN K \bar{K}, \pi B\to N K\bar{K}, K^+B\to K^+B, \bar{K} B\to \bar{K}B, Y N\to \bar{K} NN, \pi \pi\to K \bar{K} as well as πYKˉN\pi Y\to \bar{K}N and KˉNπY\bar{K} N\to \pi Y for the antikaon absorption. Whereas the experimental K+K^+ spectra can be reproduced without introducing any selfenergies for the mesons in Ni + Ni collisions from 0.8 to 1.8 GeV/u, the KK^- yield is underestimated by a factor of 5--7 at 1.66 and 1.85 GeV/u. However, introducing density dependent antikaon masses as proposed by Kaplan and Nelson, the antikaon spectra can be reasonably well described.Comment: 16 pages, LaTeX, plus 12 postscript figures, submitted to Nucl. Phys.

    Muon Anomalous g2g -2 and Gauged LμLτL_\mu - L_\tau Models

    Full text link
    In this paper we study ZZ' contribution to g2g -2 of the muon anomalous magnetic dipole moment in gauged U(1)LμLτU(1)_{L_\mu - L_\tau} models. Here LiL_i are the lepton numbers. We find that there are three classes of models which can produce a large value of g2g-2 to account for possible discrepancy between the experimental data and the Standard Model prediction. The three classes are: a) Models with an exact U(1)LμLτU(1)_{L_\mu - L_\tau}. In these models, ZZ' is massless. The new gauge interaction coupling ea/cosθWe a/\cos\theta_W is constrained to be 0.8×103<a<2.24×103 0.8\times 10^{-3} < |a| < 2.24\times 10^{-3}. b) Models with broken U(1)LμLτU(1)_{L_\mu - L_\tau} and the breaking scale is not related to electroweak symmetry breaking scale. The ZZ' gauge boson is massive. The allowed range of the coupling and the ZZ' mass are constrained, but ZZ' mass can be large; And c) The U(1)LμLτU(1)_{L_\mu-L_\tau} is broken and the breaking scale is related to the electroweak scale. In this case the ZZ' mass is constrained to be 1.2\sim 1.2 GeV. We find that there are interesting experimental signatures in μ+μμ+μ,τ+τ\mu^+\mu^-\to \mu^+\mu^-, \tau^+\tau^- in these models.Comment: 13 pages, 9 figure

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Kinetic equation with exact charge conservation

    Get PDF
    We formulate the kinetic master equation describing the production of charged particles which are created or destroyed only in pairs due to the conservation of their Abelian charge.Our equation applies to arbitrary particle multiplicities and reproduces the equilibrium results for both canonical (rare particles) and grand canonical (abundant particles) systems. For canonical systems, the equilibrium multiplicity is much lower and the relaxation time is much shorter than the naive extrapolation from the grand canonical ensemble results. Implications for particle chemical equilibration in heavy-ion collisions are discussed.Comment: 4 Pages in RevTe
    corecore