29,750 research outputs found

    Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions

    Full text link
    We study asymptotic behaviour at time infinity of solutions close to the non-zero constant equilibrium for the Gross-Pitaevskii equation in two and three spatial dimensions. We construct a class of global solutions with prescribed dispersive asymptotic behavior, which is given in terms of the linearized evolution

    How do Neutrinos Propagate ? - Wave-Packet Treatment of Neutrino Oscillation

    Full text link
    The wave-packet treatment of neutrino oscillation developed previously is extended to the case in which momentum distribution functions are taken to be a Gaussian form with both central values and dispersions depending on the mass eigenstates of the neutrinos. It is shown among other things that the velocity of the neutrino wave packets does not in general agree with what one would expect classically and that relativistic neutrinos emitted from pions nevertheless do follow, to a good approximation, the classical trajectory.Comment: 13 page. No figure. Typeset using PTPTeX.st

    Charge echo in a Cooper-pair box

    Full text link
    A spin-echo-type technique is applied to an artificial two-level system that utilizes charge degree of freedom in a small superconducting electrode. Gate-voltage pulses are used to produce the necessary pulse sequence in order to eliminate the inhomogeneity effect in the time-ensemble measurement and to obtain refocused echo signals. Comparison of the decay time of the observed echo signal with estimated decoherence time suggests that low-frequency energy-level fluctuations due to the 1/f charge noise dominate the dephasing in the system.Comment: 4 pages, 3 figure

    EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers

    Full text link
    At nanometer manufacturing technology nodes, process variations significantly affect circuit performance. To combat them, post- silicon clock tuning buffers can be deployed to balance timing bud- gets of critical paths for each individual chip after manufacturing. The challenge of this method is that path delays should be mea- sured for each chip to configure the tuning buffers properly. Current methods for this delay measurement rely on path-wise frequency stepping. This strategy, however, requires too much time from ex- pensive testers. In this paper, we propose an efficient delay test framework (EffiTest) to solve the post-silicon testing problem by aligning path delays using the already-existing tuning buffers in the circuit. In addition, we only test representative paths and the delays of other paths are estimated by statistical delay prediction. Exper- imental results demonstrate that the proposed method can reduce the number of frequency stepping iterations by more than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    CP violation in semileptonic tau lepton decays

    Full text link
    The leading order contribution to the direct CP asymmetry in tau^{+/-} -> K^{+/-} pi^0 nu_{tau} decay rates is evaluated within the Standard Model. The weak phase required for CP violation is introduced through an interesting mechanism involving second order weak interactions, which is also responsible for tiny violations of the Delta S= Delta Q rule in K_{l3} decays. The calculated CP asymmetry turns out to be of order 10^{-12}, leaving a large window for studying effects of non-standard sources of CP violation in this observable.Comment: 5 pages, 3 figures, version published in Phys.Rev.

    Quantum noise in the Josephson charge qubit

    Full text link
    We study decoherence of the Josephson charge qubit by measuring energy relaxation and dephasing with help of the single-shot readout. We found that the dominant energy relaxation process is a spontaneous emission induced by quantum noise coupled to the charge degree of freedom. Spectral density of the noise at high frequencies is roughly proportional to the qubit excitation energy.Comment: Submitted to Phys. Rev. Letter

    Application of selective epitaxy to fabrication of nanometer scale wire and dot structures

    Get PDF
    The selective growth of nanometer scale GaAs wire and dot structures using metalorganic vapor phase epitaxy is demonstrated. Spectrally resolved cathodoluminescence images as well as spectra from single dots and wires are presented. A blue shifting of the GaAs peak is observed as the size scale of the wires and dots decreases

    Dynamical Properties of a Growing Surface on a Random Substrate

    Full text link
    The dynamics of the discrete Gaussian model for the surface of a crystal deposited on a disordered substrate is investigated by Monte Carlo simulations. The mobility of the growing surface was studied as a function of a small driving force FF and temperature TT. A continuous transition is found from high-temperature phase characterized by linear response to a low-temperature phase with nonlinear, temperature dependent response. In the simulated regime of driving force the numerical results are in general agreement with recent dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
    corecore