29,750 research outputs found
Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions
We study asymptotic behaviour at time infinity of solutions close to the
non-zero constant equilibrium for the Gross-Pitaevskii equation in two and
three spatial dimensions. We construct a class of global solutions with
prescribed dispersive asymptotic behavior, which is given in terms of the
linearized evolution
How do Neutrinos Propagate ? - Wave-Packet Treatment of Neutrino Oscillation
The wave-packet treatment of neutrino oscillation developed previously is
extended to the case in which momentum distribution functions are taken to be a
Gaussian form with both central values and dispersions depending on the mass
eigenstates of the neutrinos. It is shown among other things that the velocity
of the neutrino wave packets does not in general agree with what one would
expect classically and that relativistic neutrinos emitted from pions
nevertheless do follow, to a good approximation, the classical trajectory.Comment: 13 page. No figure. Typeset using PTPTeX.st
Charge echo in a Cooper-pair box
A spin-echo-type technique is applied to an artificial two-level system that
utilizes charge degree of freedom in a small superconducting electrode.
Gate-voltage pulses are used to produce the necessary pulse sequence in order
to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed
echo signal with estimated decoherence time suggests that low-frequency
energy-level fluctuations due to the 1/f charge noise dominate the dephasing in
the system.Comment: 4 pages, 3 figure
EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers
At nanometer manufacturing technology nodes, process variations significantly
affect circuit performance. To combat them, post- silicon clock tuning buffers
can be deployed to balance timing bud- gets of critical paths for each
individual chip after manufacturing. The challenge of this method is that path
delays should be mea- sured for each chip to configure the tuning buffers
properly. Current methods for this delay measurement rely on path-wise
frequency stepping. This strategy, however, requires too much time from ex-
pensive testers. In this paper, we propose an efficient delay test framework
(EffiTest) to solve the post-silicon testing problem by aligning path delays
using the already-existing tuning buffers in the circuit. In addition, we only
test representative paths and the delays of other paths are estimated by
statistical delay prediction. Exper- imental results demonstrate that the
proposed method can reduce the number of frequency stepping iterations by more
than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201
CP violation in semileptonic tau lepton decays
The leading order contribution to the direct CP asymmetry in tau^{+/-} ->
K^{+/-} pi^0 nu_{tau} decay rates is evaluated within the Standard Model. The
weak phase required for CP violation is introduced through an interesting
mechanism involving second order weak interactions, which is also responsible
for tiny violations of the Delta S= Delta Q rule in K_{l3} decays. The
calculated CP asymmetry turns out to be of order 10^{-12}, leaving a large
window for studying effects of non-standard sources of CP violation in this
observable.Comment: 5 pages, 3 figures, version published in Phys.Rev.
Quantum noise in the Josephson charge qubit
We study decoherence of the Josephson charge qubit by measuring energy
relaxation and dephasing with help of the single-shot readout. We found that
the dominant energy relaxation process is a spontaneous emission induced by
quantum noise coupled to the charge degree of freedom. Spectral density of the
noise at high frequencies is roughly proportional to the qubit excitation
energy.Comment: Submitted to Phys. Rev. Letter
Application of selective epitaxy to fabrication of nanometer scale wire and dot structures
The selective growth of nanometer scale GaAs wire and dot structures using metalorganic vapor phase epitaxy is demonstrated. Spectrally resolved cathodoluminescence images as well as spectra from single dots and wires are presented. A blue shifting of the GaAs peak is observed as the size scale of the wires and dots decreases
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
- …