57,468 research outputs found
The GEMS Approach to Stationary Motions in the Spherically Symmetric Spacetimes
We generalize the work of Deser and Levin on the unified description of
Hawking radiation and Unruh effect to general stationary motions in spherically
symmetric black holes. We have also matched the chemical potential term of the
thermal spectrum of the two sides for uncharged black holes.Comment: Latex file, 12 pages, no figure; v2: typos fixed; v3: minor
corrections, final version published in JHE
Flavor symmetry breaking effects on SU(3) Skyrmion
We study the massive SU(3) Skyrmion model to investigate the flavor symmetry
breaking (FSB) effects on the static properties of the strange baryons in the
framework of the rigid rotator quantization scheme combined with the improved
Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB
kinetic terms are shown to improve the ratio of the strange-light to
light-light interaction strengths and that of the strange-strange to
light-light.Comment: 12 pages, latex, no figure
model with Hopf term and fractional spin statistics
We reconsider the model with the Hopf term by using the
Batalin-Fradkin-Tyutin (BFT) scheme, which is an improved version of the Dirac
quantization method. We also perform a semi-classical quantization of the
topological charge Q sector by exploiting the collective coordinates to
explicitly show the fractional spin statistics.Comment: 15 page
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the C+Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential
Simultaneous analyses are performed for elastic scattering and
fusion cross section data for the C+Pb system at
near-Coulomb-barrier energies by using the extended optical model approach in
which the polarization potential is decomposed into direct reaction (DR) and
fusion parts. Use is made of the double folding potential as a bare potential.
It is found that the experimental elastic scattering and fusion data are well
reproduced without introducing any normalization factor for the double folding
potential and also that both DR and fusion parts of the polarization potential
determined from the analyses satisfy separately the dispersion
relation. Furthermore, it is shown that the imaginary parts of both DR and
fusion potentials at the strong absorption radius change very rapidly, which
results in a typical threshold anomaly in the total imaginary potential as
observed with tightly bound projectiles such as -particle and O.Comment: 26 pages, 7 figures, submitted to Physical Review
BRST invariance and de Rham-type cohomology of 't Hooft-Polyakov monopole
We exploit the 't Hooft-Polyakov monopole to define closed algebra of the
quantum field operators and the BRST charge . In the first-class
configuration of the Dirac quantization, by including the -exact
gauge fixing term and the Faddeev-Popov ghost term, we find the BRST invariant
Hamiltonian to investigate the de Rham-type cohomology group structure for the
monopole system. The Bogomol'nyi bound is also discussed in terms of the
first-class topological charge defined on the extended internal 2-sphere.Comment: 8 page
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential
Simultaneous analyses previously made for elastic scattering and
fusion cross section data for the Li+Pb system is extended to the
Li+Pb system at near-Coulomb-barrier energies based on the
extended optical model approach, in which the polarization potential is
decomposed into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without introducing any
normalization factor for the double folding potential and that both the DR and
fusion parts of the polarization potential determined from the
analyses satisfy separately the dispersion relation. Further, we find that the
real part of the fusion portion of the polarization potential is attractive
while that of the DR part is repulsive except at energies far below the Coulomb
barrier energy. A comparison is made of the present results with those obtained
from the Continuum Discretized Coupled Channel (CDCC) calculations and a
previous study based on the conventional optical model with a double folding
potential. We also compare the present results for the Li+Pb system
with the analysis previously made for the Li+Pb system.Comment: 7 figures, submitted to PR
- âŠ