18,630 research outputs found

    Multiple wavemode scanning for near and far-side defect characterisation

    Get PDF
    The combination of ultrasonic inspections using different wavemodes can give more information than is available with single mode inspection. In this work, the response of shear and Rayleigh waves to surface-breaking defects propagating on the near-side and far-side of a sample is investigated. The directivity of shear waves generated by a racetrack coil electromagnetic acoustic transducer (EMAT) is identified and used to set an ideal separation for a pair of transmit-receive EMATs. Defects are indicated by a reduction in the transmitted Rayleigh wave amplitude, and by blocking of the shear wave. Used together, these can identify features in the bulk wave behaviour which are due to near-face surface-breaking defects, and give a full picture of both surfaces. By using a combination of the two wavemodes, the angle of propagation and length of any near-side defects can additionally be identified. A scanning method for samples is proposed

    Phased electromagnetic acoustic transducer array for Rayleigh wave surface defect detection

    Get PDF
    A phased electromagnetic acoustic transducer (EMAT) array system has been developed for detection and characterisation of surface breaking defects. An array of four linear coils which are individually controlled are used to generate a Rayleigh wave. The high current electronics combined with the coil designs enables the array to generate either narrowband or broadband signals, and controlling the phase delay between the channels makes it possible to change the ultrasound wavelength without requiring the physical separation of the coils to be changed. Experimental results show that the four-coil phased array is able to generate a wavelength range from 3.0 mm to 11.7 mm. Surface breaking defects were characterised using a transmit-receive set-up with a broadband EMAT detector being used to detect the Rayleigh wave. Machined surface slots with different depths were used for technique validation. The results show that the array is sensitive to surface defects and that a wide depth sensitivity range for defect sizing can be easily achieved by applying phasing to tune the wavelength of operation. A large increase in detection flexibility is immediately shown

    Modified dispersion relations and black hole physics

    Full text link
    A modified formulation of energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such modification will give corrections to both the temperature and the entropy of black holes. In particular this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaching the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter.Comment: 4 pages, Revtex. Final version to appear in PR

    Density matrix renormalisation group for a quantum spin chain at non-zero temperature

    Full text link
    We apply a recent adaptation of White's density matrix renormalisation group (DMRG) method to a simple quantum spin model, the dimerised XYXY chain, in order to assess the applicabilty of the DMRG to quantum systems at non-zero temperature. We find that very reasonable results can be obtained for the thermodynamic functions down to low temperatures using a very small basis set. Low temperature results are found to be most accurate in the case when there is a substantial energy gap.Comment: 6 pages, Standard Latex File + 7 PostScript figures available on reques

    Pulsars in FIRST Observations

    Get PDF
    We identified 16 pulsars from the Faint Images of the Radio Sky at Twenty-cm (FIRST) at 1.4 GHz. Their positions and total flux densities are extracted from the FIRST catalog. Comparing the source positions with those in the PSRcatalog, we obtained better determined positions of PSRs J1022+1001, J1518+4904, J1652+2651, and proper motion upper limits of another three pulsars PSRs J0751+1807, J1012+5307, J1640+2224. Proper motions of the other 10 pulsars are consistent with the values in the catalog.Comment: 6 pages, 2 figures, 3 tables, submited to CJA

    Physical decomposition of the gauge and gravitational fields

    Full text link
    Physical decomposition of the non-Abelian gauge field has recently solved the two-decade-lasting problem of a meaningful gluon spin. Here we extend this approach to gravity and attack the century-lasting problem of a meaningful gravitational energy. The metric is unambiguously separated into a pure geometric term which contributes null curvature tensor, and a physical term which represents the true gravitational effect and always vanishes in a flat space-time. By this decomposition the conventional pseudo-tensors of the gravitational stress-energy are easily rescued to produce definite physical result. Our decomposition applies to any symmetric tensor, and has interesting relation to the transverse-traceless (TT) decomposition discussed by Arnowitt, Deser and Misner, and by York.Comment: 11 pages, no figure; significant revision, with discussion on relations of various metric decomposition

    Isospin dependence of pseudospin symmetry in nuclear resonant states

    Full text link
    The relativistic mean field theory in combination with the analytic continuation in the coupling constant method is used to determine the energies and widths of single-particle resonant states in Sn isotopes. It is shown that there exists clear shell structure in the resonant levels as appearing in the bound levels. In particular, the isospin dependence of pseudospin symmetry is clearly shown in the resonant states, is consistent with that in the bound states, where the splittings of energies and widths between pseudospin doublets are found in correlation with the quantum numbers of single-particle states, as well as the nuclear mass number. The similar phenomenon also emerges in the spin partners.Comment: 7 pages, 6 figure

    A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians

    Full text link
    A density-matrix renormalization group (DMRG) method for highly anisotropic two-dimensional systems is presented. The method consists in applying the usual DMRG in two steps. In the first step, a pure one dimensional calculation along the longitudinal direction is made in order to generate a low energy Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by coupling in the transverse direction the 1D Hamiltonians. The method is applied to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure

    A Two-dimensional Infinte System Density Matrix Renormalization Group Algorithm

    Full text link
    It has proved difficult to extend the density matrix renormalization group technique to large two-dimensional systems. In this Communication I present a novel approach where the calculation is done directly in two dimensions. This makes it possible to use an infinite system method, and for the first time the fixed point in two dimensions is studied. By analyzing several related blocking schemes I find that there exists an algorithm for which the local energy decreases monotonically as the system size increases, thereby showing the potential feasibility of this method.Comment: 5 pages, 6 figure

    Thermodynamical quantities of lattice full QCD from an efficient method

    Get PDF
    I extend to QCD an efficient method for lattice gauge theory with dynamical fermions. Once the eigenvalues of the Dirac operator and the density of states of pure gluonic configurations at a set of plaquette energies (proportional to the gauge action) are computed, thermodynamical quantities deriving from the partition function can be obtained for arbitrary flavor number, quark masses and wide range of coupling constants, without additional computational cost. Results for the chiral condensate and gauge action are presented on the 10410^4 lattice at flavor number Nf=0N_f=0, 1, 2, 3, 4 and many quark masses and coupling constants. New results in the chiral limit for the gauge action and its correlation with the chiral condensate, which are useful for analyzing the QCD chiral phase structure, are also provided.Comment: Latex, 11 figures, version accepted for publicatio
    • …
    corecore