31,087 research outputs found

    Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays

    Full text link
    We use linear analysis to examine the effect of cosmic rays (CRs) on the Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt a slab equilibrium model in which the gravity (including self-gravity) is perpendicular to the mid-plane, the magnetic field lies along the slab. CR is described as a fluid and only along magnetic field lines diffusion is considered. The linearised equations are solved numerically. The system is susceptible to Parker-Jeans instability. In general the system is less unstable when the CR diffusion coefficient is smaller (i.e., the coupling between the CRs and plasma is stronger). The system is also less unstable if CR pressure is larger. This is a reminiscence of the fact that Jeans instability and Parker instability are less unstable when the gas pressure is larger (or temperature is higher). Moreover, for large CR diffusion coefficient (or small CR pressure), perturbations parallel to the magnetic field are more unstable than those perpendicular to it. The other governing factor on the growth rate of the perturbations in different directions is the thickness of the disk or the strength of the external pressure on the disk. In fact, this is the determining factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap

    Partonic Effects in Heavy Ion Collisions at RHIC

    Full text link
    Effects of partonic interactions in heavy ion collisions at RHIC are studied in a multiphase transport model (AMPT) that includes both initial partonic and final hadronic interactions.It is found that a large parton scattering cross section is needed to understand the measured elliptic flow of pions and two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest, Hungary, March 3-7, 200

    Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions

    Full text link
    We propose the enhancement of Λc\Lambda_c yield in heavy ion collisions at RHIC and LHC as a novel signal for the existence of diquarks in the strongly coupled quark-gluon plasma produced in these collisions as well as in the Λc\Lambda_c. Assuming that stable bound diquarks can exist in the quark-gluon plasma, we argue that the yield of Λc\Lambda_c would be increased by two-body collisions between udud diquarks and cc quarks, in addition to normal three-body collisions among uu, dd and cc quarks. A quantitative study of this effect based on the coalescence model shows that including the contribution of diquarks to Λc\Lambda_c production indeed leads to a substantial enhancement of the Λc/D\Lambda_c/D ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    Selecting Finite Unified Theories with Current Data

    Full text link
    Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Unified Theories that can be made all-loop finite, leading to a severe reduction of the free parameters. We review the investigation of FUTs based on SU(5) in the context of low-energy phenomenology observables. Using the restrictions from the top and bottom quark masses, it is possible to discriminate between different models. Including further low-energy constraints such as B-physics observables, the bound on the lightest Higgs boson mass and the cold dark matter density, we derive the predictions for the supersymmetric particle spectrum and the prospects for discoveries at the LHC.Comment: 3 pages, 3 figures, talk given at SUSY08, Seoul, Kore

    Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs

    Get PDF
    We analyse the model of stochastic re-acceleration of electrons, which are emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then into the Galactic halo, in order to explain the origin on nonthermal (radio and gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for re-acceleration in the halo is supplied by shocks generated by processes of star accretion onto the central black hole. Numerical simulations show that regions with strong turbulence (places for electron re-acceleration) are located high up in the Galactic Halo about several kpc above the disk. The energy of SNR electrons that reach these regions does not exceed several GeV because of synchrotron and inverse Compton energy losses. At appropriate parameters of re-acceleration these electrons can be re-accelerated up to the energy 10E12 eV which explains in this model the origin of the observed radio and gamma-ray emission from the FB. However although the model gamma-ray spectrum is consistent with the Fermi results, the model radio spectrum is steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma outflow from the Galactic central regions are taken into account, then the re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap
    corecore