7,267 research outputs found

    Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study

    Get PDF
    In order to gain insights into the origin of colossal magneto-resistance (CMR) in manganese oxides, we performed a ^{139}La NMR study in the double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie temperature T_C=126 K, applying a magnetic field induces a long-range ferromagnetic order that persists up to T=330 K. The critical field at which the induced magnetic moment is saturated coincides with the field at which the CMR effect reaches to a maximum. Our results therefore indicate that the CMR observed above T_C in this compound is due to the field-induced ferromagnetism that produces a metallic state via the double exchange interaction

    Quark Propagation in the Quark-Gluon Plasma

    Full text link
    It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions behaves as a nearly ideal fluid. That behavior may be understood if the quark and antiquark mean-free- paths are very small in the system, leading to a "sticky molasses" description of the plasma, as advocated by the Stony Brook group. This behavior may be traced to the fact that there are relatively low-energy qqˉq\bar{q} resonance states in the plasma leading to very large scattering lengths for the quarks. These resonances have been found in lattice simulation of QCD using the maximum entropy method (MEM). We have used a chiral quark model, which provides a simple representation of effects due to instanton dynamics, to study the resonances obtained using the MEM scheme. In the present work we use our model to study the optical potential of a quark in the quark-gluon plasma and calculate the quark mean-free-path. Our results represent a specific example of the dynamics of the plasma as described by the Stony Brook group.Comment: 17 pages, 4 figures, revtex

    The ground state of a mixture of two species of fermionic atoms in 1D optical lattice

    Full text link
    In this paper, we investigate the ground state properties of a mixture of two species of fermionic atoms in one-dimensional optical lattice, as described by the asymmetric Hubbard model. The quantum phase transition from density wave to phase separation is investigated by studying both the corresponding charge order parameter and quantum entanglement. A rigorous proof that even for the single hole doping case, the density wave is unstable to the phase separation in the infinite U limit, is given. Therefore, our results are quite instructive for both on-going experiments on strongly correlated cold-atomic systems and traditional heavy fermion systems.Comment: 9 pages, 10 figures, extended versio

    Deduction of Pure Spin Current from Spin Linear and Circular Photogalvanic Effect in Semiconductor Quantum Wells

    Get PDF
    We study the spin photogalvanic effect in two-dimensional electron system with structure inversion asymmetry by means of the solution of semiconductor optical Bloch equations. It is shown that a linearly polarized light may inject a pure spin current in spin-splitting conduction bands due to Rashba spin-orbit coupling, while a circularly polarized light may inject spin-dependent photocurrent. We establish an explicit relation between the photocurrent by oblique incidence of a circularly polarized light and the pure spin current by normal incidence of a linearly polarized light such that we can deduce the amplitude of spin current from the measured spin photocurrent experimentally. This method may provide a source of spin current to study spin transport in semiconductors quantitatively

    Evidence for a full energy gap for nickel-pnictide LaNiAsO_{1-x}F_x superconductors by ^{75}As nuclear quadrupole resonance

    Full text link
    We report systematic ^{75}As-NQR and ^{139}La-NMR studies on nickel-pnictide superconductors LaNiAsO_{1-x}F_x (x=0, 0.06, 0.10 and 0.12). The spin lattice relaxation rate 1/T_1 decreases below T_c with a well-defined coherence peak and follows an exponential decay at low temperatures. This result indicates that the superconducting gap is fully opened, and is strikingly different from that observed in iron-pnictide analogs. In the normal state, 1/T_1T is constant in the temperature range T_c \sim 4 K < T <10 K for all compounds and up to T=250 K for x=0 and 0.06, which indicates weak electron correlations and is also different from the iron analog. We argue that the differences between the iron and nickel pnictides arise from the different electronic band structure. Our results highlight the importance of the peculiar Fermi-surface topology in iron-pnictides.Comment: 4 pages, 5 figure

    Antiferromagnetic Spin Fluctuation above the Superconducting Dome and the Full-Gaps Superconducting State in LaFeAsO1-xFx Revealed by 75As-Nuclear Quadrupole Resonance

    Full text link
    We report a systematic study by 75As nuclear-quadrupole resonance in LaFeAsO1-xFx. The antiferromagnetic spin fluctuation (AFSF) found above the magnetic ordering temperature TN = 58 K for x = 0.03 persists in the regime 0.04 < x < 0.08 where superconductivity sets in. A dome-shaped x-dependence of the superconducting transition temperature Tc is found, with the highest Tc = 27 K at x = 0.06 which is realized under significant AFSF. With increasing x further, the AFSF decreases, and so does Tc. These features resemble closely the cuprates La2-xSrxCuO4. In x = 0.06, the spin-lattice relaxation rate (1/T1) below Tc decreases exponentially down to 0.13 Tc, which unambiguously indicates that the energy gaps are fully-opened. The temperature variation of 1/T1 below Tc is rendered nonexponential for other x by impurity scattering.Comment: 5 pages, 5 figures, more references adde

    Numerical simulations of a ballistic spin interferometer with the Rashba spin-orbital interaction

    Full text link
    We numerically investigate the transport behavior of a quasi one-dimension (1D) square loop device containing the Rashba spin-orbital interaction in the presence of a magnetic flux. The conductance versus the magnetic field shows the Al'tshuler-Aronov-Spivak (AAS) and Aharonov-Bohm (AB) oscillations. We focus on the oscillatory amplitudes, and find that both of them are strongly dependent on the spin precession angle (i.e. the strength of the spin-orbit interaction) and exhibit no-periodic oscillations, which are well in agreement with a recent experiment by Koga et al. [cond-mat/0504743(unpublished)]. However, our numerical results for the ideal 1D square loop device for the node positions of the amplitudes of the AB and AAS oscillations are found to be of some discrepancies comparing with quasi-1D square loop with a finite width. In the presence of disorder and taking the disorder ensemble average, the AB oscillation in the conductance will disappear, while the time-reversal symmetric AAS oscillation still remains. Furthermore, the node positions of the AAS oscillatory amplitude remains the same.Comment: 6 pages, 7 figure

    Quantum correlations in the collective spin systems

    Full text link
    Quantum and classical pairwise correlations in two typical collective spin systems (i.e., the Dicke model and the Lipkin-Meshkov-Glick model) are discussed. These correlations in the thermodynamical limit are obtained analytically and in a finite-size system are calculated numerically. Large-size scaling behavior for the quantum discord itself is observed, which has never been reported in another critical system. A logarithmic diverging behavior for the first derivative of the quantum discord is also found in both models, which might be universal in the second-order quantum phase transition. It is suggested that the pronounced maximum or minimum of first derivative of quantum discord signifies the critical point. Comparisons between the quantum discord and the scaled concurrence are performed. It is shown that the quantum discord is very small in one phase and robust in the other phase, while the scaled concurrence shows maximum at the critical point and decays rapidly when away from the the critical point.Comment: 8 pages, 4 figure

    Phase glass and zero-temperature phase transition in a randomly frustrated two-dimensional quantum rotor model

    Full text link
    The ground state of the quantum rotor model in two dimensions with random phase frustration is investigated. Extensive Monte Carlo simulations are performed on the corresponding (2+1)-dimensional classical model under the entropic sampling scheme. For weak quantum fluctuation, the system is found to be in a phase glass phase characterized by a finite compressibility and a finite value for the Edwards-Anderson order parameter, signifying long-ranged phase rigidity in both spatial and imaginary time directions. Scaling properties of the model near the transition to the gapped, Mott insulator state with vanishing compressibility are analyzed. At the quantum critical point, the dynamic exponent zdyn≃1.17z_{\rm dyn}\simeq 1.17 is greater than one. Correlation length exponents in the spatial and imaginary time directions are given by ν≃0.73\nu\simeq 0.73 and νz≃0.85\nu_z\simeq 0.85, respectively, both assume values greater than 0.6723 of the pure case. We speculate that the phase glass phase is superconducting rather than metallic in the zero current limit.Comment: 14 pages, 4 figures, to appear in JSTA
    • …
    corecore