1,917 research outputs found

    Evolution of transport properties of BaFe2-xRuxAs2 in a wide range of isovalent Ru substitution

    Full text link
    The effects of isovalent Ru substitution at the Fe sites of BaFe2-xRuxAs2 are investigated by measuring resistivity and Hall coefficient on high-quality single crystals in a wide range of doping (0 < x < 1.4). Ru substitution weakens the antiferromagnetic (AFM) order, inducing superconductivity for relatively high doping level of 0.4 < x < 0.9. Near the AFM phase boundary, the transport properties show non-Fermi-liquid-like behaviors with a linear-temperature dependence of resistivity and a strong temperature dependence of Hall coefficient with a sign change. Upon higher doping, however, both of them recover conventional Fermi-liquid behaviors. Strong doping dependence of Hall coefficient together with a small magnetoresistance suggest that the anomalous transport properties can be explained in terms of anisotropic charge carrier scattering due to interband AFM fluctuations rather than a conventional multi-band scenario.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter

    Electron-hole asymmetry in Co- and Mn-doped SrFe2As2

    Full text link
    Phase diagram of electron and hole-doped SrFe2As2 single crystals is investigated using Co and Mn substitution at the Fe-sites. We found that the spin-density-wave state is suppressed by both dopants, but the superconducting phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence of the superconductivity by Mn-doping is in sharp contrast to the hole-doped system with K-substitution at the Sr sites. Distinct structural change, in particular the increase of the Fe-As distance by Mn-doping is important to have a magnetic and semiconducting ground state as confirmed by first principles calculations. The absence of electron-hole symmetry in the Fe-site-doped SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure

    Most Complex Non-Returning Regular Languages

    Get PDF
    A regular language LL is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each n4n\ge 4 there exists a ternary witness of state complexity nn that meets the bound for reversal and that at least three letters are needed to meet this bound. Moreover, the restrictions of this witness to binary alphabets meet the bounds for product, star, and boolean operations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has (n1)n(n-1)^n elements and requires at least (n2)\binom{n}{2} generators. We find the maximal state complexities of atoms of non-returning languages. Finally, we show that there exists a most complex non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure

    Twitter-based analysis of the dynamics of collective attention to political parties

    Get PDF
    Large-scale data from social media have a significant potential to describe complex phenomena in real world and to anticipate collective behaviors such as information spreading and social trends. One specific case of study is represented by the collective attention to the action of political parties. Not surprisingly, researchers and stakeholders tried to correlate parties' presence on social media with their performances in elections. Despite the many efforts, results are still inconclusive since this kind of data is often very noisy and significant signals could be covered by (largely unknown) statistical fluctuations. In this paper we consider the number of tweets (tweet volume) of a party as a proxy of collective attention to the party, identify the dynamics of the volume, and show that this quantity has some information on the elections outcome. We find that the distribution of the tweet volume for each party follows a log-normal distribution with a positive autocorrelation of the volume over short terms, which indicates the volume has large fluctuations of the log-normal distribution yet with a short-term tendency. Furthermore, by measuring the ratio of two consecutive daily tweet volumes, we find that the evolution of the daily volume of a party can be described by means of a geometric Brownian motion (i.e., the logarithm of the volume moves randomly with a trend). Finally, we determine the optimal period of averaging tweet volume for reducing fluctuations and extracting short-term tendencies. We conclude that the tweet volume is a good indicator of parties' success in the elections when considered over an optimal time window. Our study identifies the statistical nature of collective attention to political issues and sheds light on how to model the dynamics of collective attention in social media.Comment: 16 pages, 7 figures, 3 tables. Published in PLoS ON

    Magnetotransport and the upper critical magnetic field in MgB2

    Full text link
    Magnetotransport measurements are presented on polycrystalline MgB2 samples. The resistive upper critical magnetic field reveals a temperature dependence with a positive curvature from Tc = 39.3 K down to about 20 K, then changes to a slightly negative curvature reaching 25 T at 1.5 K. The 25- Tesla upper critical field is much higher than what is known so far on polycrystals of MgB2 but it is in agreement with recent data obtained on epitaxial MgB2 films. The deviation of Bc2(T) from standard BCS might be due to the proposed two-gap superconductivity in this compound. The observed quadratic normal-state magnetoresistance with validity of Kohler's rule can be ascribed to classical trajectory effects in the low-field limit.Comment: 6 pages, incl. 3 figure
    corecore