5,595 research outputs found

    General Analysis of Inflation in the Jordan frame Supergravity

    Full text link
    We study various inflation models in the Jordan frame supergravity with a logarithmic Kahler potential. We find that, in a class of inflation models containing an additional singlet in the superpotential, three types of inflation can be realized: the Higgs-type inflation, power-law inflation, and chaotic inflation with/without a running kinetic term. The former two are possible if the holomorphic function dominates over the non-holomorphic one in the frame function, while the chaotic inflation occurs when both are comparable. Interestingly, the fractional-power potential can be realized by the running kinetic term. We also discuss the implication for the Higgs inflation in supergravity.Comment: 16 pages, 1 figur

    Orbital Compass Model as an Itinerant Electron System

    Full text link
    Two-dimensional orbital compass model is studied as an interacting itinerant electron model. A Hubbard-type tight-binding model, from which the orbital compass model is derived in the strong coupling limit, is identified. This model is analyzed by the random-phase approximation (RPA) and the self-consistent RPA methods from the weak coupling. Anisotropy for the orbital fluctuation in the momentum space is qualitatively changed by the on-site Coulomb interaction. This result is explained by the fact that the dominant fluctuation is changed from the intra-band nesting to the inter-band one by increasing the interaction.Comment: 7 pages, 8 figure

    Higgs Chaotic Inflation in Standard Model and NMSSM

    Full text link
    We construct a chaotic inflation model in which the Higgs fields play the role of the inflaton in the standard model as well as in the singlet extension of the supersymmetric standard model. The key idea is to allow a non-canonical kinetic term for the Higgs field. The model is a realization of the recently proposed running kinetic inflation, in which the coefficient of the kinetic term grows as the inflaton field. The inflaton potential depends on the structure of the Higgs kinetic term. For instance, the inflaton potential is proportional to phi^2 and phi^{2/3} in the standard model and NMSSM, respectively. It is also possible to have a flatter inflaton potential.Comment: 5 pages. v2:discussion and references adde

    Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Full text link
    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.Comment: 7 pages (two-column), 3 figure

    Holographic Renormalization of Foliation Preserving Gravity and Trace Anomaly

    Full text link
    From the holographic renormalizationg group viewpoint, while the scale transformation plays a primary role in the duality by providing the extra dimension, the special conformal transformation seems to only play a secondary role. We, however, claim that the space-time diffeomorphism is crucially related to the latter. For its demonstration, we study the holographic renormalization group flow of a foliation preserving diffeomophic theory of gravity (a.k.a. space-time flipped Horava gravity). We find that the dual field theory, if any, is only scale invariant but not conformal invariant. In particular, we show that the holographic trace anomaly in four-dimension predicts the Ricci scalar squared term that would be incompatible with the Wess-Zumino consistency condition if it were conformal. This illustrates how the foliation preserving diffeomophic theory of gravity could be inconsistent with a theorem of the dual unitary quantum field theory.Comment: 18 pages, v2: reference added, v3: comments on more recent literature added in response to referee's reques

    Degenerate dispersive equations arising in the study of magma dynamics

    Full text link
    An outstanding problem in Earth science is understanding the method of transport of magma in the Earth's mantle. Models for this process, transport in a viscously deformable porous media, give rise to scalar degenerate, dispersive, nonlinear wave equations. We establish a general local well-posedness for a physical class of data (roughly H1H^1) via fixed point methods. The strategy requires positive lower bounds on the solution. This is extended to global existence for a subset of possible nonlinearities by making use of certain conservation laws associated with the equations. Furthermore, we construct a Lyapunov energy functional, which is locally convex about the uniform state, and prove (global in time) nonlinear dynamic stability of the uniform state for any choice of nonlinearity. We compare the dynamics to that of other problems and discuss open questions concerning a larger range of nonlinearities, for which we conjecture global existence.Comment: 27 Pages, 7 figures are not present in this version. See http://www.columbia.edu/~grs2103/ for a PDF with figures. Submitted to Nonlinearit

    Empirical Determination of Threshold Partial Wave Amplitudes in pp→ppωp p \to p p \omega

    Full text link
    Using the model independent irreducible tensor approach to ω\omega production in pppp collisions, we show theoretically that, it is advantageous to measure experimentally the polarization of ω\omega, in addition to the proposed experimental study employing a polarized beam and a polarized target.Comment: 6 pages, 1 Table, Latex-2

    Observables and Correlators in Nonrelativistic ABJM Theory

    Full text link
    Non-relativistic ABJM theory is defined by Galilean limit of mass-deformed N=6 Chern-Simons theory. Holographic string theory dual to the theory is not known yet. To understand features candidate gravity dual might exhibit, we examine local and nonlocal physical observables and their correlations in the non-relativistic ABJM theory. We show that gauge invariant local observables correspond to zero-norm states and that correlation functions among them are trivial. We also show that a particular class of nonlocal observables, Wilson loops, are topological in the sense that their correlation functions coincide with those of pure Chern-Simons theory. We argue that the theory is nevertheless physical and illustrate several physical observables whose correlation functions are nontrivial. We also study quantum aspects. We show that Chern-Simons level is finitely renormalized and that dilatation operator acting on spin chain is trivial at planar limit. These results all point to string scale geometry of gravity dual and to intriguing topological and tensionless nature of dual string defined on it.Comment: 1+30 pages, no figure, v2. typos fixed and references adde

    Omega Production in pp Collisions

    Full text link
    A model-independent irreducible tensor formalism which has been developed earlier to analyze measurements of p⃗p⃗→ppπ∘\vec{p}\vec{p}\to pp \pi^\circ, is extended to present a theoretical discussion of p⃗p⃗→ppω\vec{p}\vec{p}\to pp \omega and the polarization of ω\omega in pp→ppω⃗pp\to pp \vec{\omega}. The recent measurement of unpolarized differential cross section for pp→ppωpp\to pp \omega is analyzed using this theoretical formalism.Comment: 5 pages (double column), no figures, uses revtex

    Secular instability in quasi-viscous disc accretion

    Get PDF
    A first-order correction in the α\alpha-viscosity parameter of Shakura and Sunyaev has been introduced in the standard inviscid and thin accretion disc. A linearised time-dependent perturbative study of the stationary solutions of this "quasi-viscous" disc leads to the development of a secular instability on large spatial scales. This qualitative feature is equally manifest for two different types of perturbative treatment -- a standing wave on subsonic scales, as well as a radially propagating wave. Stability of the flow is restored when viscosity disappears.Comment: 15 pages, 2 figures, AASTeX. Added some new material and upgraded the reference lis
    • …
    corecore