3,045 research outputs found
Solidification of undercooled liquids
During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy
Poor survival outcomes in HER2 positive breast cancer patients with low grade, node negative tumours
We present a retrospective analysis on a cohort of low-grade, node-negative patients showing that human epidermal growth factor receptor 2 (HER2) status significantly affects the survival in this otherwise very good prognostic group. Our results provide support for the use of adjuvant trastuzumab in patients who are typically classified as having very good prognosis, not routinely offered standard chemotherapy, and who as such do not fit current UK prescribing guidelines for trastuzumab
Expression of hMLH1 is inactivated in the gastric adenomas with enhanced microsatellite instability
Microsatellite instability (MSI) and frameshift mutations in the genes containing coding nucleotide repeats have been reported in a subset of gastric adenomas, however the inactivation profiles of DNA mismatch repair genes in MSI-positive gastric adenomas have not been characterized. To address the origin of MSI in gastric adenomas, expressions of hMLH1 and hMSH2 were explored in 86 gastric adenomas. Gastric carcinomas, of which 16 were MSI-positive and 22 MSI-negative, were used as controls. MSI was found in 15 (17%) of gastric adenomas. Absent or decreased hMLH1 expression by immunohistochemistry was noted in most of the MSI-positive adenomas (13/15, 87%) and carcinomas (14/16, 88%), and all of these tumours showed methylation of the hMLH1 gene promoter. In contrast, rare inactivation of hMLH1 expression was found in MSI-negative adenomas (3/71, 4%) and carcinomas (2/22, 9%). Intense expression of hMSH2 gene product was observed in most of the gastric adenomas and carcinomas regardless of MSI status. These findings indicate that the inactivation of hMLH1 gene expression by promoter methylation is an early event and might be the origin of MSI-positive gastric adenomas. © 2001 Cancer Research Campaign http://www.bjcancer.co
Business process improvement with the AB-BPM methodology
A fundamental assumption of Business Process Management (BPM) is that redesign delivers refined and improved versions of business processes. This assumption, however, does not necessarily hold, and any required compensatory action may be delayed until a new round in the BPM life-cycle completes. Current approaches to process redesign face this problem in one way or another, which makes rapid process improvement a central research problem of BPM today. In this paper, we address this problem by integrating concepts from process execution with ideas from DevOps. More specifically, we develop a methodology called AB-BPM that offers process improvement validation in two phases: simulation and AB tests. Our simulation technique extracts decision probabilities and metrics from the event log of an existing process version and generates traces for the new process version based on this knowledge. The results of simulation guide us towards AB testing where two versions (A and B) are operational in parallel and any new process instance is routed to one of them. The routing decision is made at runtime on the basis of the achieved results for the registered performance metrics of each version. Our routing algorithm provides for ultimate convergence towards the best performing version, no matter if it is the old or the new version. We demonstrate the efficacy of our methodology and techniques by conducting an extensive evaluation based on both synthetic and real-life data
On The 5D Extra-Force according to Basini-Capozziello-Leon Formalism and five important features: Kar-Sinha Gravitational Bending of Light, Chung-Freese Superluminal Behaviour, Maartens-Clarkson Black Strings, Experimental measures of Extra Dimensions on board International Space Station(ISS) and the existence of the Particle due to a Higher Dimensional spacetime
We use the Conformal Metric as described in Kar-Sinha work on Gravitational
Bending of Light in a 5D Spacetime to recompute the equations of the 5D Force
in Basini-Capozziello-Leon Formalism and we arrive at a result that possesses
some advantages. The equations of the Extra Force as proposed by Leon are now
more elegant in Conformal Formalism and many algebraic terms can be simplified
or even suppressed. Also we recompute the Kar-Sinha Gravitational Bending of
Light affected by the presence of the Extra Dimension and analyze the
Superluminal Chung-Freese Features of this Formalism describing the advantages
of the Chung-Freese BraneWorld when compared to other Superluminal spacetime
metrics(eg:Warp Drive) and we describe why the Extra Dimension is invisible and
how the Extra Dimension could be made visible at least in theory.We also
examine the Maartens-Clarkson Black Holes in 5D(Black Strings) coupled to
massive Kaluza-Klein graviton modes predicted by Extra Dimensions theories and
we study experimental detection of Extra Dimensions on-board LIGO and LISA
Space Telescopes.We also propose the use of International Space Station(ISS) to
measure the additional terms(resulting from the presence of Extra Dimensions)
in the Kar-Sinha Gravitational Bending of Light in Outer Space to verify if we
really lives in a Higher Dimensional Spacetime.Also we demonstrate that
Particle can only exists if the 5D spacetime exists.Comment: Withdrawn: author no longer wishes to post work on arXi
- …