11,498 research outputs found
Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories
An algebraic method is used to work out the mass spectra and symmetry
breaking patterns of general vacuum states in N=2 supersymmetric SU(n)
Chern-Simons-Higgs systems with the matter fields being in the adjoint
representation. The approach provides with us a natural basis for fields, which
will be useful for further studies in the self-dual solutions and quantum
corrections. As the vacuum states satisfy the SU(2) algebra, it is not
surprising to find that their spectra are closely related to that of angular
momentum addition in quantum mechanics. The analysis can be easily generalized
to other classical Lie groups.Comment: 17 pages, use revte
The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories
By taking into account the effect of the would be Chern-Simons term, we
calculate the quantum correction to the Chern-Simons coefficient in
supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SU(n). Because of supersymmetry, the corrections
in the symmetric and Higgs phases are identical. In particular, the correction
is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result
should be quite general, and have important implication for the more
interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are
included, 13 pages, 1 figure, latex with revte
Ballistic transport, chiral anomaly and emergence of the neutral electron - hole plasma in graphene
The process of coherent creation of particle - hole excitations by an
electric field in graphene is quantitatively described using a dynamic "first
quantized" approach. We calculate the evolution of current density, number of
pairs and energy in ballistic regime using the tight binding model. The series
in electric field strength up to third order in both DC and AC are
calculated. We show how the physics far from the two Dirac points enters
various physical quantities in linear response and how it is related to the
chiral anomaly. The third harmonic generation and the imaginary part of
conductivity are obtained. It is shown that at certain time scale
the physical behaviour dramatically changes and the
perturbation theory breaks down. Beyond the linear response physics is explored
using an exact solution of the first quantized equations. While for small
electric fields the I-V curve is linear characterized by the universal minimal
resistivity %, at the conductivity grows
fast. The copious pair creation (with rate ), analogous to Schwinger's
electron - positron pair creation from vacuum in QED, leads to creation of the
electron - hole plasma at ballistic times of order . This process is
terminated by a relaxational recombination.Comment: 15 pages, 5 figures
Self-dual Maxwell Chern-Simons Solitons In 1+1 Dimensions
We study the domain wall soliton solutions in the relativistic self-dual
Maxwell Chern-Simons model in 1+1 dimensions obtained by the dimensional
reduction of the 2+1 model. Both topological and nontopological self-dual
solutions are found in this case. A la BPS dyons here the Bogomol'ny bound on
the energy is expressed in terms of two conserved quantities. We discuss the
underlying supersymmetry. Nonrelativistic limit of this model is also
considered and static, nonrelativistic self-dual soliton solutions are
obtained.Comment: 18 pages RevTex, 2 figures included, to appear in Phys. Rev.
Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N=4 Super Yang-Mills Theory
We generalize the half-BPS Janus configuration of four-dimensional N=4 super
Yang-Mills theory to allow the theta-angle, as well as the gauge coupling, to
vary with position. We show that the existence of this generalization is
closely related to the existence of novel three-dimensional Chern-Simons
theories with N=4 supersymmetry. Another closely related problem, which we also
elucidate, is the D3-NS5 system in the presence of a four-dimensional
theta-angle.Comment: 66 p
Self-DUal SU(3) Chern-Simons Higgs Systems
We explore self-dual Chern-Simons Higgs systems with the local and
global symmetries where the matter field lies in the adjoint
representation. We show that there are three degenerate vacua of different
symmetries and study the unbroken symmetry and particle spectrum in each
vacuum. We classify the self-dual configurations into three types and study
their properties.Comment: Columbia Preprint CU-TP-635, 19 page
- âŠ