62,508 research outputs found

    The effects of Zn Impurity on the Properties of Doped Cuprates in the Normal State

    Full text link
    We study the interplay of quantum impurity, and collective spinon and holon dynamics in Zn doped high-Tc_c cuprates in the normal state. The two-dimensional t-t′^{\prime}-J models with one and a small amount of Zn impurity are investigated within a numerical method based on the double-time Green function theory. We study the inhomogeneities of holon density and antiferromagnetic correlation background in cases with different Zn concentrations, and obtain that doped holes tend to assemble around the Zn impurity with their mobility being reduced. Therefore a bound state of holon is formed around the nonmagnetic Zn impurity with the effect helping Zn to introduce local antiferromagnetism around itself. The incommensurate peaks we obtained in the spin structure factor indicate that Zn impurities have effects on mixing the q=(π\pi, π\pi) and q=0 components in spin excitations.Comment: 5 pages, 3 figure

    Superalgebra and Conservative Quantities in N=1 Self-dual Supergravity

    Full text link
    The N=1 self-dual supergravity has SL(2,C) and the left-handed and right -handed local supersymmetries. These symmetries result in SU(2) charges as the angular-momentum and the supercharges. The model possesses also the invariance under the general translation transforms and this invariance leads to the energy-momentum. All the definitions are generally covariant . As the SU(2) charges and the energy-momentum we obtained previously constituting the 3-Poincare algebra in the Ashtekar's complex gravity, the SU(2) charges, the supercharges and the energy-momentum here also restore the super-Poincare algebra, and this serves to support the reasonableness of their interpretations.Comment: 18 pages, Latex, no figure

    Superstructure-induced splitting of Dirac cones in silicene

    Full text link
    Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K') points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.Comment: 6 pages, 3 figure

    Hierarchical fragmentation and collapse signatures in a high-mass starless region

    Full text link
    Aims: Understanding the fragmentation and collapse properties of the dense gas during the onset of high-mass star formation. Methods: We observed the massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution map to previous 3mm PdBI data, and now the new 1.07mm continuum observations, the sub-structures hierarchically fragment on the increasingly smaller spatial scales. While the fragment separations may still be roughly consistent with pure thermal Jeans fragmentation, the derived core masses are almost two orders of magnitude larger than the typical Jeans mass at the given densities and temperatures. However, the data can be reconciled with models using non-homogeneous initial density structures, turbulence and/or magnetic fields. While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak 70mum emission toward one core with a comparably low luminosity of ~16L_sun, re-enforcing the general youth of the region. The spectral line data always exhibit multiple spectral components toward each core with comparably small line widths for the individual components (in the 0.3 to 1.0km/s regime). Based on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio <=0.25. We discuss that the likely origin of these spectral properties may be the global collapse of the original gas clump that results in multiple spectral components along each line of sight. Even within this dynamic picture the individual collapsing gas cores appear to have very low levels of internal turbulence.Comment: 8 pages, 4 figures, A&A in pres

    Max-plus analysis on some binary particle systems

    Full text link
    We concern with a special class of binary cellular automata, i.e., the so-called particle cellular automata (PCA) in the present paper. We first propose max-plus expressions to PCA of 4 neighbors. Then, by utilizing basic operations of the max-plus algebra and appropriate transformations, PCA4-1, 4-2 and 4-3 are solved exactly and their general solutions are found in terms of max-plus expressions. Finally, we analyze the asymptotic behaviors of general solutions and prove the fundamental diagrams exactly.Comment: 24 pages, 5 figures, submitted to J. Phys.

    Effect of various dopant elements on primary graphite growth

    Get PDF
    Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates

    Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Full text link
    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of black hole approach to the order of Planck scale, it stops radiating and leads to black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomenons imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at LHC, the results demonstrate that the black hole can not be produced in the recent LHC.Comment: 12 pages, 6 figure
    • …
    corecore