288,051 research outputs found

    Measuring dark energy with the Eiso−EpE_{\rm iso}-E_{\rm p} correlation of gamma-ray bursts using model-independent methods

    Full text link
    In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the Eiso−EpE_{\rm iso}-E_{\rm p} correlation, where EisoE_{\rm iso} is the isotropic-equivalent gamma-ray energy and EpE_{\rm p} is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter σext\sigma_{\rm ext} is taken into account and assigned to the parameter EisoE_{\rm iso}. The best-fitting values are a=49.15±0.26a=49.15\pm0.26, b=1.42±0.11b=1.42\pm0.11, σext=0.34±0.03\sigma_{\rm ext}=0.34\pm0.03 and Ωm=0.79\Omega_m=0.79 in the flat Λ\LambdaCDM model. The constraint on Ωm\Omega_m is 0.55<Ωm<10.55<\Omega_m<1 at the 1σ\sigma confidence level. If reduced χ2\chi^2 method is used, the best-fit results are a=48.96±0.18a=48.96\pm0.18, b=1.52±0.08b=1.52\pm0.08 and Ωm=0.50±0.12\Omega_m=0.50\pm0.12. The second method is using type Ia supernovae (SNe Ia) to calibrate the Eiso−EpE_{\rm iso}-E_{\rm p} correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm=0.23−0.04+0.06\Omega_m=0.23^{+0.06}_{-0.04} for flat Λ\LambdaCDM, and Ωm=0.18±0.11\Omega_m=0.18\pm0.11 and ΩΛ=0.46±0.51\Omega_{\Lambda}=0.46\pm0.51 for non-flat Λ\LambdaCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm=0.271±0.019\Omega_m=0.271\pm0.019 and h=0.701±0.002h=0.701\pm0.002 for the flat Λ\LambdaCDM, and for the non-flat Λ\LambdaCDM, the results are Ωm=0.225±0.044\Omega_m=0.225\pm0.044, ΩΛ=0.640±0.082\Omega_{\Lambda}=0.640\pm0.082 and h=0.698±0.004h=0.698\pm0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the Eiso−EpE_{\rm iso}-E_{\rm p} correlation is promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains calibrated distance moduli of GRB

    How Saturated are Absorption Lines in the Broad Absorption Line Quasar PG 1411+442 ?

    Get PDF
    Recently, convincing evidence was found for extremely large X-ray absorption by column densities >1023cm−2> 10^{23} cm^{-2} in broad absorption line quasars. One consequence of this is that any soft X-ray emission from these QSOs would be the scattered light or leaked light from partially covering absorbing material. A detection of the unabsorbed soft X-ray and absorbed hard X-ray compo nent will allow to determine the total column density as well as the effective covering factor of the absorbing material, which can be hardly obtained from the UV absorption lines. Brinkmann et al. (1999) showed that both the unabsorbed and absorbed components are detected in the nearby very bright broad absorption line quasar PG 1411+442. In this letter, we make a further analysis of the broad band X-ray spectrum and the UV spectrum from HST, and demonstrate that broad absorption lines are completely saturated at the bottom of absorption troughs.Comment: 6 pages, 3 postscript figures. to appear in Astrophy. J. Letter

    Quantum computing with nearest neighbor interactions and error rates over 1%

    Full text link
    Large-scale quantum computation will only be achieved if experimentally implementable quantum error correction procedures are devised that can tolerate experimentally achievable error rates. We describe a quantum error correction procedure that requires only a 2-D square lattice of qubits that can interact with their nearest neighbors, yet can tolerate quantum gate error rates over 1%. The precise maximum tolerable error rate depends on the error model, and we calculate values in the range 1.1--1.4% for various physically reasonable models. Even the lowest value represents the highest threshold error rate calculated to date in a geometrically constrained setting, and a 50% improvement over the previous record.Comment: 4 pages, 8 figure

    Topological code Autotune

    Full text link
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool Autotune capable of performing this optimization automatically, and give two highly distinct examples of its use and extreme outperformance of unoptimized TQEC. Autotune is designed to facilitate the precise study of real hardware running TQEC with every quantum gate having a realistic, physics-based error model.Comment: 13 pages, 17 figures, version accepted for publicatio
    • …
    corecore