18,745 research outputs found

    Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks

    Get PDF
    Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector

    First Structure Formation: A Simulation of Small Scale Structure at High Redshift

    Get PDF
    We describe the results of a simulation of collisionless cold dark matter in a LambdaCDM universe to examine the properties of objects collapsing at high redshift (z=10). We analyze the halos that form at these early times in this simulation and find that the results are similar to those of simulations of large scale structure formation at low redshift. In particular, we consider halo properties such as the mass function, density profile, halo shape, spin parameter, and angular momentum alignment with the minor axis. By understanding the properties of small scale structure formation at high redshift, we can better understand the nature of the first structures in the universe, such as Population III stars.Comment: 31 pages, 14 figures; accepted for publication in ApJ. Figure 1 can also be viewed at http://cfa-www.harvard.edu/~hjang/research

    Permutation sampling in Path Integral Monte Carlo

    Full text link
    A simple algorithm is described to sample permutations of identical particles in Path Integral Monte Carlo (PIMC) simulations of continuum many-body systems. The sampling strategy illustrated here is fairly general, and can be easily incorporated in any PIMC implementation based on the staging algorithm. Although it is similar in spirit to an existing prescription, it differs from it in some key aspects. It allows one to sample permutations efficiently, even if long paths (e.g., hundreds, or thousands of slices) are needed. We illustrate its effectiveness by presenting results of a PIMC calculation of thermodynamic properties of superfluid Helium-four, in which a very simple approximation for the high-temperature density matrix was utilized

    Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields

    Full text link
    The domain patterns in a thin ferromagnetic film are investigated in both experiments and numerical simulations. Magnetic domain patterns under a zero field are usually observed after an external magnetic field is removed. It is demonstrated that the characteristics of the domain patterns depend on the decreasing rate of the external field, although it can also depend on other factors. Our numerical simulations and experiments show the following properties of domain patterns: a sea-island structure appears when the field decreases rapidly from the saturating field to the zero field, while a labyrinth structure is observed for a slowly decreasing field. The mechanism of the dependence on the field sweeping rate is discussed in terms of the concepts of crystallization.Comment: 4 pages, 3 figure

    How many photons are needed to distinguish two transparencies?

    Get PDF
    We give a bound on the minimum number of photons that must be absorbed by any quantum protocol to distinguish between two transparencies. We show how a quantum Zeno method in which the angle of rotation is varied at each iteration can attain this bound in certain situations.Comment: 5 pages, 4 figure
    • 

    corecore