141,739 research outputs found
Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons
Carbon-based nanostructures and graphene, in particular, evoke a lot of
interest as new promising materials for nanoelectronics and spintronics. One of
the most important issue in this context is the impact of external electrodes
on electronic properties of graphene nanoribbons (GNR). The present theoretical
method is based on the tight-binding model and a modified recursive procedure
for Green's functions. The results show that within the ballistic transport
regime, the so called end-contacted geometry (of minimal GNR/electrode
interface area), is usually more advantageous for practical applications than
its side-contacted counterpart (with a larger coverage area), as far as the
electrical conductivity is concerned. As regards the giant magnetoresistance
coefficient, however, the situation is exactly opposite, since spin- splitting
effects are more pronounced in the lower conductive side-contacted setups.Comment: 8 pages, 4 figure
Large Momenta Fluctuations Of Charm Quarks In The Quark-Gluon Plasma
We show that large fluctuations of D mesons kinetic energy (or momentum)
distributions might be a signature of a phase transition to the quark gluon
plasma (QGP). In particular, a jump in the variance of the momenta or kinetic
energy, as a function of a control parameter (temperature or Fermi energy at
finite baryon densities) might be a signature for a first order phase
transition to the QGP. This behaviour is completely consistent with the order
parameter defined for a system of interacting quarks at zero temperature and
finite baryon densities which shows a jump in correspondance to a first order
phase transition to the QGP. The shows exactly the same behavior of
the order parameter and of the variance of the D mesons. We discuss
implications for relativistic heavy ion collisions within the framework of a
transport model and possible hints for experimental data.Comment: 4 pages 3 figure
Properties of superconducting MgB_2 wires: "in-situ" versus "ex-situ" reaction technique
We have fabricated a series of iron-sheathed superconducting wires prepared
by the powder-in-tube technique from (MgB_2)_{1-x}:(Mg+2B)_x initial powder
mixtures taken with different proportions, so that x varies from 0 to 1. It
turned out that "ex-situ" prepared wire (x = 0) has considerable disadvantages
compared to all the other wires in which "in-situ" assisted (0 < x < 1) or pure
"in-situ" (x = 1) preparation was used due to weaker inter-grain connectivity.
As a result, higher critical current densities J_c were measured over the
entire range of applied magnetic fields B_a for all the samples with x > 0.
Pinning of vortices in MgB_2 wires is shown to be due to grain boundaries.
J_c(B_a) behavior is governed by an interplay between the transparency of grain
boundaries and the amount of "pinning" grain boundaries. Differences between
thermo-magnetic flux-jump instabilities in the samples and a possible threat to
practical applications are also discussed.Comment: To be published in Supercond. Sci. Technol. (2003), in pres
Solution space heterogeneity of the random K-satisfiability problem: Theory and simulations
The random K-satisfiability (K-SAT) problem is an important problem for
studying typical-case complexity of NP-complete combinatorial satisfaction; it
is also a representative model of finite-connectivity spin-glasses. In this
paper we review our recent efforts on the solution space fine structures of the
random K-SAT problem. A heterogeneity transition is predicted to occur in the
solution space as the constraint density alpha reaches a critical value
alpha_cm. This transition marks the emergency of exponentially many solution
communities in the solution space. After the heterogeneity transition the
solution space is still ergodic until alpha reaches a larger threshold value
alpha_d, at which the solution communities disconnect from each other to become
different solution clusters (ergodicity-breaking). The existence of solution
communities in the solution space is confirmed by numerical simulations of
solution space random walking, and the effect of solution space heterogeneity
on a stochastic local search algorithm SEQSAT, which performs a random walk of
single-spin flips, is investigated. The relevance of this work to glassy
dynamics studies is briefly mentioned.Comment: 11 pages, 4 figures. Final version as will appear in Journal of
Physics: Conference Series (Proceedings of the International Workshop on
Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japan
- …