67,190 research outputs found
Quasiparticle and Optical Properties of Rutile and Anatase TiO
Quasiparticle excitation energies and optical properties of TiO in the
rutile and anatase structures are calculated using many-body perturbation
theory methods. Calculations are performed for a frozen crystal lattice;
electron-phonon coupling is not explicitly considered. In the GW method,
several approximations are compared and it is found that inclusion of the full
frequency dependence as well as explicit treatment of the Ti semicore states
are essential for accurate calculation of the quasiparticle energy band gap.
The calculated quasiparticle energies are in good agreement with available
photoemission and inverse photoemission experiments. The results of the GW
calculations, together with the calculated static screened Coulomb interaction,
are utilized in the Bethe-Salpeter equation to calculate the dielectric
function for both the rutile and anatase structures. The
results are in good agreement with experimental observations, particularly the
onset of the main absorption features around 4 eV. For comparison to low
temperature optical absorption measurements that resolve individual excitonic
transitions in rutile, the low-lying discrete excitonic energy levels are
calculated with electronic screening only. The lowest energy exciton found in
the energy gap of rutile has a binding energy of 0.13 eV. In agreement with
experiment, it is not dipole allowed, but the calculated exciton energy exceeds
that measured in absorption experiments by about 0.22 eV and the scale of the
exciton binding energy is also too large. The quasiparticle energy alignment of
rutile is calculated for non-polar (110) surfaces. In the GW approximation, the
valence band maximum is 7.8 eV below the vacuum level, showing a small shift
from density functional theory results.Comment: Submitted to Physical Review
Bodily attractiveness and egalitarianism are negatively related in males.
Ancestrally, relatively attractive individuals and relatively formidable males may have had reduced incentives to be egalitarian (i.e., to act in accordance with norms promoting social equality). If selection calibrated one's egalitarianism to one's attractiveness/formidability, then such people may exhibit reduced egalitarianism ("observed egalitarianism") and be perceived by others as less egalitarian ("perceived egalitarianism") in modern environments. To investigate, we created 3D body models of 125 participants to use both as a source of anthropometric measurements and as stimuli to obtain ratings of bodily attractiveness and perceived egalitarianism. We also measured observed egalitarianism (via an economic "dictator" game) and indices of political egalitarianism (preference for socialism over capitalism) and "equity sensitivity." Results indicated higher egalitarianism levels in women than in men, and moderate-to-strong negative relationships between (a) attractiveness and observed egalitarianism among men, (b) attractiveness and perceived egalitarianism among both sexes, and (c) formidability and perceived egalitarianism among men. We did not find support for two previously-reported findings: that observed egalitarianism and formidability are negatively related in men, and that wealth and formidability interact to explain variance in male egalitarianism. However, this lack of support may have been due to differences in variable measurement between our study and previous studies
Magneto-optics in pure and defective Ga_{1-x}Mn_xAs from first-principles
The magneto-optical properties of GaMnAs including their most
common defects were investigated with precise first--principles
density-functional FLAPW calculations in order to: {\em i}) elucidate the
origin of the features in the Kerr spectra in terms of the underlying
electronic structure; {\em ii}) perform an accurate comparison with
experiments; and {\em iii}) understand the role of the Mn concentration and
occupied sites in shaping the spectra. In the substitutional case, our results
show that most of the features have an interband origin and are only slightly
affected by Drude--like contributions, even at low photon energies. While not
strongly affected by the Mn concentration for the intermediately diluted range
( 10%), the Kerr factor shows a marked minimum (up to 1.5) occurring
at a photon energy of 0.5 eV. For interstitial Mn, the calculated
results bear a striking resemblance to the experimental spectra, pointing to
the comparison between simulated and experimental Kerr angles as a valid tool
to distinguish different defects in the diluted magnetic semiconductors
framework.Comment: 10 pages including 2 figures, submitted to Phys. Rev.
Crystal Interpretation of Kerov-Kirillov-Reshetikhin Bijection II. Proof for sl_n Case
In proving the Fermionic formulae, combinatorial bijection called the
Kerov--Kirillov--Reshetikhin (KKR) bijection plays the central role. It is a
bijection between the set of highest paths and the set of rigged
configurations. In this paper, we give a proof of crystal theoretic
reformulation of the KKR bijection. It is the main claim of Part I
(math.QA/0601630) written by A. Kuniba, M. Okado, T. Takagi, Y. Yamada, and the
author. The proof is given by introducing a structure of affine combinatorial
matrices on rigged configurations.Comment: 45 pages, version for publication. Introduction revised, more
explanations added to the main tex
Diffusive propagation of wave packets in a fluctuating periodic potential
We consider the evolution of a tight binding wave packet propagating in a
fluctuating periodic potential. If the fluctuations stem from a stationary
Markov process satisfying certain technical criteria, we show that the square
amplitude of the wave packet after diffusive rescaling converges to a
superposition of solutions of a heat equation.Comment: 13 pages (v2: added a paragraph on the history of the problem, added
some references, correct a few typos; v3 minor corrections, added keywords
and subject classes
Empirical Evaluation of the Parallel Distribution Sweeping Framework on Multicore Architectures
In this paper, we perform an empirical evaluation of the Parallel External
Memory (PEM) model in the context of geometric problems. In particular, we
implement the parallel distribution sweeping framework of Ajwani, Sitchinava
and Zeh to solve batched 1-dimensional stabbing max problem. While modern
processors consist of sophisticated memory systems (multiple levels of caches,
set associativity, TLB, prefetching), we empirically show that algorithms
designed in simple models, that focus on minimizing the I/O transfers between
shared memory and single level cache, can lead to efficient software on current
multicore architectures. Our implementation exhibits significantly fewer
accesses to slow DRAM and, therefore, outperforms traditional approaches based
on plane sweep and two-way divide and conquer.Comment: Longer version of ESA'13 pape
- …