88 research outputs found

    Rearing zombie flies: Laboratory culturing of the behaviourally manipulating fungal pathogen Entomophthora muscae

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this record.Data availability: No data was used for the research described in the article.Insect pathogenic fungi (IPF) and insects have ubiquitous interactions in nature. The extent of these interkingdom host-pathogen interactions are both complex and diverse. Some IPF, notably of the order Entomophthorales, manipulate their species-specific host before death. The fungus-induced altered insect behaviours are sequential and can accurately be repeatedly characterised temporally, making them a valuable model for understanding the molecular and chemical underpinnings of behaviour and host-pathogen co-evolutionary biology. Here, we present methods for the isolation and laboratory culturing of the emerging behaviourally manipulating model IPF Entomophthora muscae for experimentation.•E. muscae isolation and culturing in vitro.•Establishing and maintaining an E. muscae culture in vivo in houseflies (Musca domestica).•Controlled E. muscae infections for virulence experiments and quantification of conidia discharge per cadaver.European Union Horizon 2020Independent Research Fund DenmarkCarlsberg Foundatio

    Knowledge of learning disabilities: the relationship with choice, duty of care and non-aversive approaches

    Get PDF
    The present study examines the relationship between the knowledge of the diagnostic criteria for a learning disability (based on DSM IV criteria), care practices and experience in health care and social care staff. Responses to a questionnaire were analysed in terms of participants emphasis on: recognizing duty of care; enabling choice; non-aversive and aversive strategies. Results indicated that the knowledge of the criteria for a learning disability was limited, with only I6% of the sample correctly identifying all three criteria. There were no significant differences between the two groups in relation to experience or level of knowledge. No clear cut differences were found between the groups in relation to tendency to emphasize a particular management approach, with the strategies adopted appearing to be influenced by vignettes used in this study. Participants tended to give responses that identified both a recognition of their duty of care to clients and the need to enable choice. Limitations of this study are discussed

    Hyperthyroidism as a late effect in childhood cancer survivors-an Adult Life after Childhood Cancer in Scandinavia (ALiCCS) study

    Get PDF
    Background: Hyperthyroidism is a rare disorder which may negatively affect health and quality of life. Its occurrence in childhood cancer survivors has not previously been investigated in detail. Material and methods: In the hospital registers of the five Nordic countries, 32,944 childhood cancer survivors and 212,675 population comparisons were followed for the diagnosis of hyperthyroidism. Hospitalisation rates, standardised hospitalisation rate ratios and absolute excess risks were calculated with 95% confidence intervals (CI). Results: Hyperthyroidism was diagnosed in 131 childhood cancer survivors, yielding an overall relative risk of 1.6 (95% CI: 1.3-1.9) compared with population comparisons. The risk was greatest 1-5 years after the diagnosis of cancer and in survivors of thyroid cancers, neuroblastomas, acute lymphoblastic leukaemia and Hodgkin lymphoma. Sixty-seven percent of survivors with hyperthyroidism had tumours located in the head, neck or upper body and half of survivors with hyperthyroidism were irradiated with 77% of them in the head and neck area. Conclusion: Childhood cancer survivors are at an increased risk of hyperthyroidism, potentially resulting in non-endocrine morbidity.Peer reviewe

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    The Dynamics of Plant Cell-Wall Polysaccharide Decomposition in Leaf-Cutting Ant Fungus Gardens

    Get PDF
    The degradation of live plant biomass in fungus gardens of leaf-cutting ants is poorly characterised but fundamental for understanding the mutual advantages and efficiency of this obligate nutritional symbiosis. Controversies about the extent to which the garden-symbiont Leucocoprinus gongylophorus degrades cellulose have hampered our understanding of the selection forces that induced large scale herbivory and of the ensuing ecological footprint of these ants. Here we use a recently established technique, based on polysaccharide microarrays probed with antibodies and carbohydrate binding modules, to map the occurrence of cell wall polymers in consecutive sections of the fungus garden of the leaf-cutting ant Acromyrmex echinatior. We show that pectin, xyloglucan and some xylan epitopes are degraded, whereas more highly substituted xylan and cellulose epitopes remain as residuals in the waste material that the ants remove from their fungus garden. These results demonstrate that biomass entering leaf-cutting ant fungus gardens is only partially utilized and explain why disproportionally large amounts of plant material are needed to sustain colony growth. They also explain why substantial communities of microbial and invertebrate symbionts have evolved associations with the dump material from leaf-cutting ant nests, to exploit decomposition niches that the ant garden-fungus does not utilize. Our approach thus provides detailed insight into the nutritional benefits and shortcomings associated with fungus-farming in ants

    Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leaf-cutting (attine) ants use their own fecal material to manure fungus gardens, which consist of leaf material overgrown by hyphal threads of the basidiomycete fungus <it>Leucocoprinus gongylophorus </it>that lives in symbiosis with the ants. Previous studies have suggested that the fecal droplets contain proteins that are produced by the fungal symbiont to pass unharmed through the digestive system of the ants, so they can enhance new fungus garden growth.</p> <p>Results</p> <p>We tested this hypothesis by using proteomics methods to determine the gene sequences of fecal proteins in <it>Acromyrmex echinatior </it>leaf-cutting ants. Seven (21%) of the 33 identified proteins were pectinolytic enzymes that originated from the fungal symbiont and which were still active in the fecal droplets produced by the ants. We show that these enzymes are found in the fecal material only when the ants had access to fungus garden food, and we used quantitative polymerase chain reaction analysis to show that the expression of six of these enzyme genes was substantially upregulated in the fungal gongylidia. These unique structures serve as food for the ants and are produced only by the evolutionarily advanced garden symbionts of higher attine ants, but not by the fungi reared by the basal lineages of this ant clade.</p> <p>Conclusions</p> <p>Pectinolytic enzymes produced in the gongylidia of the fungal symbiont are ingested but not digested by <it>Acromyrmex </it>leaf-cutting ants so that they end up in the fecal fluid and become mixed with new garden substrate. Substantial quantities of pectinolytic enzymes are typically found in pathogenic fungi that attack live plant tissue, where they are known to breach the cell walls to allow the fungal mycelium access to the cell contents. As the leaf-cutting ant symbionts are derived from fungal clades that decompose dead plant material, our results suggest that their pectinolytic enzymes represent secondarily evolved adaptations that are convergent to those normally found in phytopathogens.</p

    Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen

    Get PDF
    Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus-garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defences and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defences such that colony collapse is unavoidable once Escovopsis infections escalate

    Monoculture of Leafcutter Ant Gardens

    Get PDF
    Background -- Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings -- Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance -- Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.The research was supported by National Science Foundation awards DEB-0920138, DEB-0639879, and DEB-0110073 to UGM; DEB-0949689 to T.R. Schultz, N. Mehdiabadi, and UGM; and a Fellowship (02/05) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico to AR. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    AN5D: Automated Stencil Framework for High-Degree Temporal Blocking on GPUs

    Full text link
    Stencil computation is one of the most widely-used compute patterns in high performance computing applications. Spatial and temporal blocking have been proposed to overcome the memory-bound nature of this type of computation by moving memory pressure from external memory to on-chip memory on GPUs. However, correctly implementing those optimizations while considering the complexity of the architecture and memory hierarchy of GPUs to achieve high performance is difficult. We propose AN5D, an automated stencil framework which is capable of automatically transforming and optimizing stencil patterns in a given C source code, and generating corresponding CUDA code. Parameter tuning in our framework is guided by our performance model. Our novel optimization strategy reduces shared memory and register pressure in comparison to existing implementations, allowing performance scaling up to a temporal blocking degree of 10. We achieve the highest performance reported so far for all evaluated stencil benchmarks on the state-of-the-art Tesla V100 GPU

    Climate Impacts, Political Institutions, and Leader Survival: Effects of Drought and Flooding Precipitation.

    Get PDF
    We explore how the political survival of leaders in different political regimes is affected by drought and flooding precipitation, which are the two major anticipated impacts of anthropogenic climate change. Using georeferenced climate data for the entire world and the Archigos dataset for the period of 1950-2010, we find that irregular political exits, such as coups or revolutions, are not significantly affected by climate impacts. Similarly, drought has a positive but insignificant effect on all types of political exits. On the other hand, we find that floods increase political turnover through the regular means such as elections or term limits. Democracies are better able to withstand the pressures arising from the economic and social disruptions associated with high precipitation than other institutional arrangements. Our results further suggest that, in the context of floods, political institutions play a more important role than economic development for the leaders’ political survival
    corecore