31,228,499 research outputs found

    Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers

    Full text link
    We investigate an inductive probe head suitable for non-invasive characterization of the magnetostatic and dynamic parameters of magnetic thin films and multilayers on the wafer scale. The probe is based on a planar waveguide with rearward high frequency connectors that can be brought in close contact to the wafer surface. Inductive characterization of the magnetic material is carried out by vector network analyzer ferromagnetic resonance. Analysis of the field dispersion of the resonance allows the determination of key material parameters such as the saturation magnetization MS or the effective damping parameter Meff. Three waveguide designs are tested. The broadband frequency response is characterized and the suitability for inductive determination of MS and Meff is compared. Integration of such probes in a wafer prober could in the future allow wafer scale in-line testing of magnetostatic and dynamic key material parameters of magnetic thin films and multilayers

    Thermodynamical properties of the ICM from hydrodynamical simulations

    Get PDF
    Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed ``cool core'' structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.Comment: 26 pages, 12 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 13; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Testing Consumer Theory in the Field: Private Consumption Versus Charitable Goods

    Get PDF

    The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra

    Full text link
    We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years respectively after the outburst of the old classical nova QU Vulpeculae (Nova Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line emission from neon and oxygen. Our analysis shows that neon was, at the first and last epochs respectively, more than 76 and 168 times overabundant by number with respect to hydrogen compared to the solar value. These high lower limits to the neon abundance confirm that QU Vul involved a thermonuclear runaway on an ONeMg white dwarf and approach the yields predicted by models of the nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl

    Causal structure of acoustic spacetimes

    Get PDF
    The so-called ``analogue models of general relativity'' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of acoustic disturbances in moving fluids are described by ``effective metrics'' that carry with them notions of ``causal structure'' as determined by an exchange of sound signals. These acoustic causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying fluid mechanics is governed by the equations of traditional hydrodynamics, not by the Einstein equations.) In this article we take a careful look at what can be said about the causal structure of acoustic spacetimes, focusing on those containing sonic points or horizons, both with a view to seeing what is different from standard general relativity, and to seeing what the similarities might be.Comment: 51 pages, 39 figures (23 colour figures, colour used to convey physics information.) V2: Two references added, some additional discussion of maximal analytic extension, plus minor cosmetic change

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.300.19+0.211.30^{+0.21}_{-0.19} (stat.) 0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445

    An End-to-End Conversational Style Matching Agent

    Full text link
    We present an end-to-end voice-based conversational agent that is able to engage in naturalistic multi-turn dialogue and align with the interlocutor's conversational style. The system uses a series of deep neural network components for speech recognition, dialogue generation, prosodic analysis and speech synthesis to generate language and prosodic expression with qualities that match those of the user. We conducted a user study (N=30) in which participants talked with the agent for 15 to 20 minutes, resulting in over 8 hours of natural interaction data. Users with high consideration conversational styles reported the agent to be more trustworthy when it matched their conversational style. Whereas, users with high involvement conversational styles were indifferent. Finally, we provide design guidelines for multi-turn dialogue interactions using conversational style adaptation

    The gamma-ray burst monitor for Lobster-ISS

    Get PDF
    Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2x10^{-12} erg cm^{-2}s$^{-1}, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4--6 arcmin. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize GRBs which occur in the Lobster FOV (162x22.5 degrees) and to significantly extend the scientific capabilities of the main instrument for the study of GRBs and X-ray transients. The combination of the two instruments will allow an unprecedented spectral coverage (from 0.1 up to 300/700 keV) for a sensitive study of the GRB prompt emission in the passband where GRBs and X-Ray Flashes emit most of their energy. The low-energy spectral band (0.1-10 keV) is of key importance for the study of the GRB environment and the search of transient absorption and emission features from GRBs, both goals being crucial for unveiling the GRB phenomenon. The entire energy band of Lobster-ISS is not covered by either the Swift satellite or other GRB missions foreseen in the next decade.Comment: 6 pages, 4 figures. Paper presented at the COSPAR 2004 General Assembly (Paris), accepted for publication in Advances in Space Research in June 2005 and available on-line at the Journal site (http://www.sciencedirect.com/science/journal/02731177), section "Articles in press

    Lyman Alpha Emitter Evolution in the Reionization Epoch

    Full text link
    Combining cosmological SPH simulations with a previously developed Lyman Alpha production/transmission model and the Early Reionization Model (ERM, reionization ends at redshift z~7), we obtain Lyman Alpha and UV Luminosity Functions (LFs) for Lyman Alpha Emitters (LAEs) for redshifts between 5.7 and 7.6. Matching model results to observations at z~5.7 requires escape fractions of Lyman Alpha, f_alpha=0.3, and UV (non-ionizing) continuum photons, f_c=0.22, corresponding to a color excess, E(B-V)=0.15. We find that (i) f_c increases towards higher redshifts, due the decreasing mean dust content of galaxies, (ii) the evolution of f_alpha/f_c hints at the dust content of the ISM becoming progressively inhomogeneous/clumped with decreasing redshift. The clustering photoionization boost is important during the initial reionization phases but has little effect on the Lyman Alpha LF for a highly ionized IGM. Halo (stellar) masses are in the range 10.0 < \log M_h < 11.8 (8.1 < \log M_* < 10.4) with M_h \propto M_*^{0.64}. The star formation rates are between 3-120 solar masses per year, mass-weighted mean ages are greater than 20 Myr at all redshifts, while the mean stellar metallicity increases from Z=0.12 to 0.22 solar metallicity from z~7.6 to z~5.7; both age and metallicity positively correlate with stellar mass. The brightest LAEs are all characterized by large star formation rates and intermediate ages (~200 Myr), while objects in the faint end of the Lyman Alpha LF show large age and star formation rate spreads. With no more free parameters, the Spectral Energy Distributions of three LAE at z~5.7 observed by Lai et al. (2007) are well reproduced by an intermediate age (182-220 Myr) stellar population and the above E(B-V) value.Comment: 13 pages, 9 figures, accepted to MNRA

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System
    corecore