195 research outputs found
Space-time evolution of electron cascades in diamond
Here we describe model calculations to follow the spatio-temporal evolution
of secondary electron cascades in diamond. The band structure of the insulator
has been explicitly incorporated into the calculations as it affects
ionizations from the valence band. A Monte-Carlo model was constructed to
describe the path of electrons following the impact of a single electron of
energy E 250 eV. The results show the evolution of the secondary electron
cascades in terms of the number of electrons liberated, the spatial
distribution of these electrons, and the energy distribution among the
electrons as a function of time. The predicted ionization rates (5-13 electrons
in 100 fs) lie within the limits given by experiments and phenomenological
models. Calculation of the local electron density and the corresponding Debye
length shows that the latter is systematically larger than the radius of the
electron cloud. This means that the electron gas generated does not represent a
plasma in a single impact cascade triggered by an electron of E 250 eV energy.
This is important as it justifies the independent-electron approximation used
in the model. At 1 fs, the (average) spatial distribution of secondary
electrons is anisotropic with the electron cloud elongated in the direction of
the primary impact. The maximal radius of the cascade is about 50 A at this
time. As the system cools, energy is distributed more equally, and the spatial
distribution of the electron cloud becomes isotropic. At 90 fs maximal radius
is about 150 A. The Monte-Carlo model described here could be adopted for the
investigation of radiation damage in other insulators and has implications for
planned experiments with intense femtosecond X-ray sources.Comment: 26 pages, latex, 13 figure
Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation
All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene
thin films, play an important role in short-wavelength free-electron laser
(FEL) research motivated by FEL optics development and prospective
nanotechnology applications. Responses of a-C and C60 layers to the extreme
ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray
(free-electron laser in Hamburg) free-electron laser radiation are investigated
by Raman spectroscopy, differential interference contrast, and atomic force
microscopy. A remarkable difference in the behavior of covalent (a-C) and
molecular (C60) carbonaceous solids is demonstrated under these irradiation
conditions. Low thresholds for ablation of a fullerene crystal (estimated to be
around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed
dose) are caused by a low cohesive energy of fullerene crystals. An efficient
mechanism of the removal of intact C60 molecules from the irradiated crystal
due to Coulomb repulsion of fullerene-cage cation radicals formed by the
ionizing radiation is revealed by a detailed modeling
TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider
The TESLA Technical Design Report Part III: Physics at an e+e- Linear
ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full
quality figures can be obtained from http://tesla.desy.de/tdr. Editors -
R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa
Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa
This study aimed to identify new arenaviruses and gather insights in the evolution of arenaviruses in Africa. During 2003 through 2005, 1,228 small mammals representing 14 different genera were trapped in 9 villages in south, east, and middle west of Côte d'Ivoire. Specimens were screened by pan-Old World arenavirus RT-PCRs targeting S and L RNA segments as well as immunofluorescence assay. Sequences of two novel tentative species of the family Arenaviridae, Menekre and Gbagroube virus, were detected in Hylomyscus sp. and Mus (Nannomys) setulosus, respectively. Arenavirus infection of Mus (Nannomys) setulosus was also demonstrated by serological testing. Lassa virus was not found, although 60% of the captured animals were Mastomys natalensis. Complete S RNA and partial L RNA sequences of the novel viruses were recovered from the rodent specimens and subjected to phylogenetic analysis. Gbagroube virus is a closely related sister taxon of Lassa virus, while Menekre virus clusters with the Ippy/Mobala/Mopeia virus complex. Reconstruction of possible virus–host co-phylogeny scenarios suggests that, within the African continent, signatures of co-evolution might have been obliterated by multiple host-switching events
Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus
<p>Abstract</p> <p>Background</p> <p>Reactive gliosis has the potential to alter biomechanical properties of the brain, impede neuronal regeneration and affect plasticity. Determining the onset and progression of reactive astrogliosis and microgliosis due to hydrocephalus is important for designing better clinical treatments.</p> <p>Methods</p> <p>Reactive astrogliosis and microgliosis were evaluated as the severity of hydrocephalus increased with age in hydrocephalic H-Tx rats and control littermates. Previous studies have suggested that gliosis may persist after short-term drainage (shunt treatment) of the cerebrospinal fluid. Therefore shunts were placed in 15d hydrocephalic rats that were sacrificed after 6d (21d of age) or after 21d (36d of age). Tissue was processed for Western blot procedures and immunohistochemistry, and probed for the astrocytic protein, Glial Fibrillary Acidic Protein (GFAP) and for microglial protein, Isolectin B4 (ILB4).</p> <p>Results</p> <p>In the parietal cortex of untreated hydrocephalic animals, GFAP levels increased significantly at 5d and at 12d compared to age-matched control rats. There was a continued increase in GFAP levels over control at 21d and at 36d. Shunting prevented some of the increase in GFAP levels in the parietal cortex. In the occipital cortex of untreated hydrocephalic animals, there was a significant increase over control in levels of GFAP at 5d. This trend continued in the 12d animals, although not significantly. Significant increases in GFAP levels were present in 21d and in 36d animals. Shunting significantly reduced GFAP levels in the 36d shunted group. Quantitative grading of immuno-stained sections showed similar changes in GFAP stained astrocytes.</p> <p>Immuno-stained microglia were altered in shape in hydrocephalic animals. At 5d and 12d, they appeared to be developmentally delayed with a lack of processes. Older 21d and 36d hydrocephalic animals exhibited the characteristics of activated microglia, with thicker processes and enlarged cell bodies. Following shunting, fewer activated microglia were present.</p> <p>Histologic examination of the periventricular area and the periaqueductal area showed similar findings with the 21d and 36d animals having increased populations of both astrocytes and microglia which were reduced following shunting with a more dramatic reduction in the long term shunted animals.</p> <p>Conclusion</p> <p>Overall, these results suggest that reactive astrocytosis and microgliosis are associated with progressive untreated ventriculomegaly, but that shunt treatment can reduce the gliosis occurring with hydrocephalus.</p
Nanoplasma Formation by High Intensity Hard X-rays
Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo-and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays
- …