655 research outputs found

    The thermal conditions of Venus

    Get PDF
    Models of Venus' thermal evolution are examined. The following subject areas are covered: (1) modified approximation of parameterized convection; (2) description of the model; (3) numerical results and asymptotic solution of the MAPC equations; (4) magnetism and the thermal regime of the cores of Earth and Venus; and (5) the thermal regime of the Venusian crust

    Geometric properties of acoustic waves generated by a point source in solar-like interior: effects of acoustic cut-off frequency

    Full text link
    Acoustic waves generated by a point source in stratified plasma are considered in this paper. Analytical parametric solution for monochromatic source is derived for plane-parallel polytrope model of the solar interior. The solution is used to gain insight into the properties of the generated wavefront as a function of excitation frequency and depth. A slowly varying pressure perturbation moving in upper layers of solar photosphere with supersonic speed is also considered. It is shown to excite acoustic waves putting certain restrictions upon their geometry of the generated wavefront. The results are discussed in relation to flare generated sunquakes.Comment: 15 pages, 7 figures, accepted by MNRA

    Spectroscopic signatures related to a sunquake

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved.. The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time-distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time-distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating the possible presence of a significant flux of downward propagating Alfvén waves

    The 2013 February 17 sunquake in the context of the active region's magnetic field configuration

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake

    Reply to comment on the paper “ on a role of quadruple component of magnetic field in defining solar activity in grand cycles” by Usoskin (2017)

    Get PDF
    In this communication we provide our answers to the comments by Usoskin (2017) on our recent paper (Popova et al, 2017a). We show that Principal Component Analysis (PCA) allows us to derive eigen vectors with eigen values assigned to variance of solar magnetic field waves from full disk solar magnetograms obtained in cycles 21–23 which came in pairs. The current paper (Popova et al, 2017a) adds the second pair of magnetic waves generated by quadruple magnetic sources. This allows us to recover a centennial cycle, in addition to the grand cycle, and to produce a closer fit to the solar and terrestrial activity features in the past millennium

    Two dimensional periodic box-ball system and its fundamental cycle

    Full text link
    We study a 2-dimensional Box-Ball system which is a ultradiscrete analog of the discrete KP equation. We construct an algorithm to calculate the fundamental cycle, which is an important conserved quantity of the 2-dim. Box-Ball system with periodic boundary condition, by using the tropical curve theory.Comment: 16 pages, 5 figure

    Properties of the 15 February 2011 Flare Seismic Sources

    Get PDF
    The first near-side X-class flare of Solar Cycle 24 occurred in February 2011 (SOL2011-02-05T01:55) and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev (Astrophys. J. Lett. 734, L15, 2011), followed by the discovery of a second sunquake by Zharkov, Green, Matthews et al. (Astrophys. J. Lett. 741, L35, 2011). The flare had a two-ribbon structure and was associated with a flux-rope eruption and a halo coronal mass ejection (CME) as reported in the CACTus catalogue. Following the discovery of the second sunquake and the spatial association of both sources with the locations of the feet of the erupting flux rope (Zharkov, Green, Matthews et al., Astrophys. J. Lett. 741, L35, 2011), we present here a more detailed analysis of the observed photospheric changes in and around the seismic sources. These sunquakes are quite unusual, taking place early in the impulsive stage of the flare, with the seismic sources showing little hard X-ray (HXR) emission, and strongest X-ray emission sources located in the flare ribbons. We present a directional time–distance diagram computed for the second source, which clearly shows a ridge corresponding to the travelling acoustic-wave packet and find that the sunquake at the second source happened about 45 seconds to one minute earlier than the first source. Using acoustic holography we report different frequency responses of the two sources. We find strong downflows at both seismic locations and a supersonic horizontal motion at the second site of acoustic-wave excitation
    • …
    corecore