68 research outputs found

    Unprocessed Viral DNA Could Be the Primary Target of the HIV-1 Integrase Inhibitor Raltegravir

    Get PDF
    Integration of HIV DNA into host chromosome requires a 3′-processing (3′-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3′-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5′C4pA33′ step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance

    The HIV-1 Integrase α4-Helix Involved in LTR-DNA Recognition Is also a Highly Antigenic Peptide Element

    Get PDF
    Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (

    Deferoxamine-fibrin accelerates angiogenesis in a rabbit model of peripheral ischemia

    No full text
    The intramuscular (i.m.) injection of a modified fibrin meshwork plus deferoxamine was tested in a rabbit model of acute hind-limb ischemia. After excision of the left external iliac and femoral arteries, 12 rabbits at the Milwaukee Heart Institute were divided into two groups: control and fibrin meshwork plus deferoxamine (FDEF) i.m. The rabbits underwent angiography before surgery, immediately after, and 1 month postoperatively. These data were compiled through counting by means of a grid overlay. Another 12 rabbits at the Vakhidov Center of Surgery, which did not undergo angiography, underwent lower limb-calf blood pressure (L-CBP) measurements made immediately after surgery and at postoperative days 10, 20 and 30. Biopsies from thigh skeletal muscles of rabbits that had L-CBP measurements underwent alkaline phosphatase staining on day 30 to determine the percentage of biopsied area that was occupied by capillaries. The number of arteries and arterioles crossing 71 grid intersections immediately post-surgery decreased from 30.2 +/- 2.3 to 18.0 +/- 2.0 (p \u3c 0.05). One month postsurgery this number increased to 29.2 +/- 2.4 in controls (p \u3c 0.05 vs immediately post-surgery) and to 59.6 +/- 3.2 in the FDEF group (p \u3c 0.001 vs immediately post-surgery). By day 30 the L-CBP ratio improved in the FDEF group (0.8 +/- 0.02) vs controls (0.3 +/- 0.04). By day 30 the capillary density increased from that of normal muscle tissue (198.6 +/- 12.9/mm2) to 292 +/- 12.4/mm2 in the FDEF group (p \u3c 0.05), but decreased in the control group to 98.7 +/- 7.7/mm2. I.m. injection of FDEF considerably accelerated angiogenesis in severely ischemic hind-limb tissue in this model, making it a viable treatment method for clinical use in patients who have critical limb ischemia

    Nanotechnology-assisted RNA delivery. From nucleic acid therapeutics to COVIDvaccines

    Get PDF
    In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists’ enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed
    • …
    corecore