1,516 research outputs found

    Extended phase space for a spinning particle

    Get PDF
    Extended phase space of an elementary (relativistic) system is introduced in the spirit of the Souriau's definition of the `space of motions' for such system. Our formulation is generally applicable to any homogeneous space-time (e.g. de Sitter) and also to Poisson actions. Calculations concerning the Minkowski case for non-zero spin particles show an intriguing alternative: we should either accept two-dimensional trajectories or (Poisson) noncommuting space-time coordinates.Comment: 12 pages, late

    Free motion on the Poisson SU(n) group

    Full text link
    SL(N,C) is the phase space of the Poisson SU(N). We calculate explicitly the symplectic structure of SL(N,C), define an analogue of the Hamiltonian of the free motion on SU(N) and solve the corresponding equations of motion. Velocity is related to the momentum by a non-linear Legendre transformation.Comment: LaTeX, 10 page

    Phase spaces related to standard classical rr-matrices

    Full text link
    Fundamental representations of real simple Poisson Lie groups are Poisson actions with a suitable choice of the Poisson structure on the underlying (real) vector space. We study these (mostly quadratic) Poisson structures and corresponding phase spaces (symplectic groupoids).Comment: 20 pages, LaTeX, no figure

    Baby Skyrme Model, Near-BPS Approximations and Supersymmetric Extensions

    Get PDF
    We study the baby Skyrme model as a theory that interpolates between two distinct BPS systems. For this a near-BPS approximation can be used which, however, involves a small deviation from each of the two BPS limits. We provide analytical explanation and numerical support for the validity of this approximation. We then study the set of all possible supersymmetric extensions of the baby Skyrme model with N=1{\cal N}=1 and the particular ones with extended N=2{\cal N}=2 supersymmetries and relate this to the above mentioned almost-BPS approximation.Comment: 23 pages, 5 figures, v2: explanations adde
    corecore