30 research outputs found

    Integrated voltage—current monitoring and control of gas metal arc weld magnetic ball-jointed open source 3-D printer

    Get PDF
    To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s computer. To test this custom current and voltage monitoring device this study reports on its use on an upgraded all metal RepRap during the printing of aluminum alloy (ER1100, ER4043, ER4943, ER4047, and ER5356). The voltage and current data were analyzed on a per alloy basis and also layer-by-layer in order to evaluate the device’s efficacy as a monitoring device for 3-D printing and the results of the integrated design are discussed

    A review of technical requirements for plug-and-play solar photovoltaic microinverter systems in the United States

    No full text
    The average American is highly supportive of solar photovoltaic (PV) technology and has the opportunity to earn a high return of investment from a PV investment for their own home. Unfortunately, the average American does not have easy access to capital/financing to install a PV system able to meet their aggregate annual electric needs. One method to overcome this challenge is to allow \u27plug-and-play solar\u27, which is defined as a fully inclusive, commercial, off-the-shelf PV system (normally consisting of a PV module and microinverter), which a prosumer can install by plugging it into an electric outlet and avoiding the need for significant permitting, inspection and interconnection processes. Many advanced countries already allow plug-and-play solar, yet U.S. regulations have lagged behind. In order to assist the U.S. overcome regulatory obstructions to greater PV penetration, this article first reviews the relevant codes and standards from the National Electric Code, local jurisdictions and utilities for PV with a specific focus on plug-and-play solar. Next, commercially available microinverters and alternating current (AC) modules are reviewed for their technical and safety compliance to these standards and all were found to be compliant. The technical requirements are then compared to regulatory and utility requirements using case studies in Michigan, which were found to create arbitrary non-technically-valid barriers to grid entry. The analysis also exposed the redundancy of the utility accessed AC disconnect switch for residential and small commercial grid connected solar PV. It is clear that the AC disconnect switch is not necessary technically and thus imposing it is an economic barrier to grid entry for solar PV systems with UL (Underwriters Laboratories) certified microinverters. To reduce consumer and utility workload and the concomitant soft costs, this article provides a streamlined application with only technical requirements and free and open source software to ease utility implementation. Finally, the advantages of supporting plug-and-play solar PV with UL certified microinverters include greater PV system performance, faster uptake and higher PV penetration levels, improved prosumer economics, and more environmentally responsible electric generation
    corecore