26,537 research outputs found

    Calibrating dipolar interaction in an atomic condensate

    Full text link
    We revisit the topic of a dipolar condensate with the recently derived more rigorous pseudo-potential for dipole-dipole interaction [A. Derevianko, Phys. Rev. A {\bf 67}, 033607 (2003)]. Based on the highly successful variational technique, we find that all dipolar effects estimated before (using the bare dipole-dipole interaction) become significantly larger, i.e. are amplified by the new velocity-dependent pseudo-potential, especially in the limit of large or small trap aspect ratios. This result points to a promising prospect for detecting dipolar effects inside an atomic condensate.Comment: 5 figures, to be publishe

    Identification of the Sequence of Steps Intrinsic to Spheromak Formation

    Get PDF
    A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows

    Real-time detection and tracking of multiple objects with partial decoding in H.264/AVC bitstream domain

    Full text link
    In this paper, we show that we can apply probabilistic spatiotemporal macroblock filtering (PSMF) and partial decoding processes to effectively detect and track multiple objects in real time in H.264|AVC bitstreams with stationary background. Our contribution is that our method cannot only show fast processing time but also handle multiple moving objects that are articulated, changing in size or internally have monotonous color, even though they contain a chaotic set of non-homogeneous motion vectors inside. In addition, our partial decoding process for H.264|AVC bitstreams enables to improve the accuracy of object trajectories and overcome long occlusion by using extracted color information.Comment: SPIE Real-Time Image and Video Processing Conference 200
    • …
    corecore