2,732 research outputs found
Expression of functional recombinant human tissue transglutaminase (TG2) using the bac-to-bac baculovirus expression system
Purpose: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer's disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. Methods: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. Results: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. Conclusion: Human TG2 was expressed efficiently in the active biological form in the Bacto- Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system. © 2016 The Authors
Hopf-cyclic cohomology of the Connes-Moscovici Hopf algebras with infinite dimensional coefficients
We discuss a new strategy for the computation of the Hopf-cyclic cohomology
of the Connes-Moscovici Hopf algebra . More precisely, we
introduce a multiplicative structure on the Hopf-cyclic complex of
, and we show that the van Est type characteristic homomorphism
from the Hopf-cyclic complex of to the Gelfand-Fuks cohomology
of the Lie algebra of formal vector fields on respects
this multiplicative structure. We then illustrate the machinery for .Comment: Minor revisions to highlight the main result
Preliminary assessment of various additives on the specific reactivity of anti- rHBsAg monoclonal antibodies
Background: Antibodies have a wide application in diagnosis and treatment. In order to maintain optimal stability of various functional parts of antibodies such as antigen binding sites, several approaches have been suggested. Using additives such as polysaccharides and polyols is one of the main methods in protecting antibodies against aggregation or degradation in the formulation. The aim of this study was to evaluate the protective effect of various additives on the specific reactivity of monoclonal antibodies (mAbs) against recombinant HBsAg (rHBsAg) epitopes. Methods: To estimate the protective effect of different additives on the stability of antibody against conformational epitopes (S3 antibody) and linear epitopes (S7 and S11 antibodies) of rHBsAg, heat shock at 37°C was performed in liquid and solid phases. Environmental factors were considered to be constant. The specific reactivity of antibodies was evaluated using ELISA method. The data were analyzed using SPSS software by Mann-Whitney nonparametric test with the confidence interval of 95%. Results: Our results showed that 0.25 M sucrose, 0.04 M trehalose and 0.5% BSA had the most protective effect on maintaining the reactivity of mAbs (S3) against conformational epitopes of rHBsAg. Results obtained from S7 and S11 mAbs against linear characteristics showed minor differences. The most efficient protective additives were 0.04 M trehalose and 1 M sucrose. Conclusion: Nowadays, application of appropriate additives is important for increasing the stability of antibodies. It was concluded that sucrose, trehalose and BSA have considerable effects on the specific reactivity of anti rHBsAg mAbs during long storage. © 2015, Avicenna Journal of Medical Biotechnology. All rights reserved
Mapping the wavefunction of transition metal acceptor states in the GaAs surface
We utilize a single atom substitution technique with spectroscopic imaging in
a scanning tunneling microscope (STM) to visualize the anisotropic spatial
structure of magnetic and non-magnetic transition metal acceptor states in the
GaAs (110) surface. The character of the defect states play a critical role in
the properties of the semiconductor, the localization of the states influencing
such things as the onset of the metal-insulator transition, and in dilute
magnetic semiconductors the mechanism and strength of magnetic interactions
that lead to the emergence of ferromagnetism. We study these states in the GaAs
surface finding remarkable similarities between the shape of the acceptor state
wavefunction for Mn, Fe, Co and Zn dopants, which is determined by the GaAs
host and is generally reproduced by tight binding calculations of Mn in bulk
GaAs [Tang, J.M. & Flatte, M.E., Phys. Rev. Lett. 92, 047201 (2004)]. The
similarities originate from the antibonding nature of the acceptor states that
arise from the hybridization of the impurity d-levels with the host. A second
deeper in-gap state is also observed for Fe and Co that can be explained by the
symmetry breaking of the surface.Comment: 19 pages, 6 figure
Pair Density Wave in the Pseudogap State of High Temperature Superconductors
Recent scanning tunneling microscopy (STM) experiments of
BiSrCaCuO have shown evidence of real-space
organization of electronic states at low energies in the pseudogap state. We
argue based on symmetry considerations as well as model calculations that the
experimentally observed modulations are due to a density wave of d-wave
Cooper-pairs without global phase coherence. We show that STM measurements can
distinguish a pair-density-wave from more typical electronic modulations such
as those due to charge density wave ordering or scattering from an onsite
periodic potential.Comment: 4 pages, 4 figures. Final version. PRL 93, 187002 (2004
Analysing the effect of lean on the performance of NPD projects using system dynamics modelling
To be able to survive in today’s fast-changing market environment companies are looking for innovative ways to improve the performance of their new product development (NPD) processes. However, uncertainty and rework are among characteristics of NPD which make them difficult to manage. Implementing lean in NPD is an innovative approach to address this issue. Using system dynamics approach to model set-based concurrent engineering as a fundamental element of lean product development, this paper shows the positive effect on of adopting this strategy on the time, cost and quality of NPD projects, in comparison with the traditional point-based design
Novel Phenomena in Dilute Electron Systems in Two Dimensions
We review recent experiments that provide evidence for a transition to a
conducting phase in two dimensions at very low electron densities. The nature
of this phase is not understood, and is currently the focus of intense
theoretical and experimental attention.Comment: To appear as a Perspective in the Proceedings of the National Academy
of Sciences. Reference to Chakravarty, Kivelson, Nayak, and Voelker's paper
added (Phil. Mag., in press
Effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron
The effect of sub-zero cooling on microstructure and mechanical properties of a low alloyed austempered ductile iron has been investigated. Austempering of samples was performed at 325! and 400℃ after austenitizing at 875℃ and 950℃. The sub-zero treatments were carried out by cooling down the samples to -30℃, -70℃ and -196℃. The changes in volume fraction of austenite and mechanical properties were determined after cooling to each temperature. The austenite volume fraction of samples which were austenitized at 875℃ and austempered at 325℃ remained unchanged, whilst it reduced in samples austenitized at 950℃ and 875℃ for austempering temperature of 400℃. In these specimens, some austenite transformed to martensite after subzero cooling. Mechanical property measurements showed a slight increase in strength and hardness and decrease in elongation and toughness due to this transformation behavior
M-atom conductance oscillations of a metallic quantum wire
The electron transport through a monoatomic metallic wire connected to leads
is investigated using the tight-binding Hamiltonian and Green's function
technique. Analytical formulas for the transmittance are derived and M-atom
oscillations of the conductance versus the length of the wire are found. Maxima
of the transmittance function versus the energy, for the wire consisted of N
atoms, determine the (N+1) period of the conductance. The periods of
conductance oscillations are discussed and the local and average quantum wire
charges are presented. The average charge of the wire is linked with the period
of the conductance oscillations and it tends to the constant value as the
length of the wire increases. For M-atom periodicity there are possible (M-1)
average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte
Recommended from our members
Electrospun Piezoelectric Polymer Nanofiber Layers for Enabling in Situ Measurement in High-Performance Composite Laminates
This article highlights the effects from composite manufacturing parameters on fiber-reinforced composite laminates modified with layers of piezoelectric thermoplastic nanofibers and a conductive electrode layer. Such modifications have been used for enabling in situ deformation measurement in high-performance aerospace and renewable energy composites. Procedures for manufacturing high-performance composites are well-known and standardized. However, this does not imply that modifications via addition of functional layers (e.g., piezoelectric nanofibers) while following the same manufacturing procedures can lead to a successful multifunctional composite structure (e.g., for enabling in situ measurement). This article challenges success of internal embedment of piezoelectric nanofibers in standard manufacturing of high-performance composites via relying on composite process specifications and parameters only. It highlights that the process parameters must be revised for manufacturing of multifunctional composites. Several methods have been used to lay up and manufacture composites such as electrospinning the thermoplastic nanofibers, processing an inter digital electrode (IDE) made by conductive epoxy-graphene resin, and prepreg autoclave manufacturing aerospace grade laminates. The purpose of fabrication of IDE was to use a resin type (HexFlow RTM6) for the conductive layer similar to that used for the composite. Thereby, material mismatch is avoided and the structural integrity is sustained via mitigation of downgrading effects on the interlaminar properties. X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and scanning electron microscopy analyses have been carried out in the material characterization phase. Pulsed thermography and ultrasonic C-scanning were used for the localization of conductive resin embedded within the composite laminates. This study also provides recommendations for enabling internally embedded piezoelectricity (and thus health-monitoring capabilities) in high-performance composite laminates
- …
