372 research outputs found

    New Approach for Evaluating Incomplete and Complete Fusion Cross Sections with Continuum-Discretized Coupled-Channels Method

    Full text link
    We propose a new method for evaluating incomplete and complete fusion cross sections separately using the Continuum-Discretized Coupled-Channels method. This method is applied to analysis of the deuteron induced reaction on a 7Li target up to 50 MeV of the deuteron incident energy. Effects of deuteron breakup on this reaction are explicitly taken into account. Results of the method are compared with those of the Glauber model, and the difference between the two is discussed. It is found that the energy dependence of the incomplete fusion cross sections obtained by the present calculation is almost the same as that obtained by the Glauber model, while for the complete fusion cross section, the two models give markedly different energy dependence. We show also that a prescription for evaluating incomplete fusion cross sections proposed in a previous study gives much smaller result than an experimental value.Comment: 10 pages, 5 figure

    Phase diagram in the imaginary chemical potential region and extended Z3 symmetry

    Full text link
    Phase transitions in the imaginary chemical potential region are studied by the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model that possesses the extended Z3 symmetry. The extended Z3 invariant quantities such as the partition function, the chiral condensate and the modifed Polyakov loop have the Roberge-Weiss (RW) periodicity. There appear four types of phase transitions; deconfinement, chiral, Polykov-loop RW and chiral RW transitions. The orders of the chiral and deconfinement transitions depend on the presence or absence of current quark mass, but those of the Polykov-loop RW and chiral RW transitions do not. The scalar-type eightquark interaction newly added in the model makes the chiral transition line shift to the vicinity of the deconfiment transition line.Comment: 22 pages,17 figure

    Continuum-discretized coupled-channels method for four-body nuclear breakup in 6^6He+12^{12}C scattering

    Full text link
    We propose a fully quantum-mechanical method of treating four-body nuclear breakup processes in scattering of a projectile consisting of three constituents, by extending the continuum-discretized coupled-channels method. The three-body continuum states of the projectile are discretized by diagonalizing the internal Hamiltonian of the projectile with the Gaussian basis functions. For 6^6He+12^{12}C scattering at 18 and 229.8 MeV, the validity of the method is tested by convergence of the elastic and breakup cross sections with respect to increasing the number of the basis functions. Effects of the four-body breakup and the Borromean structure of 6^6He on the elastic and total reaction cross sections are discussed.Comment: 5 pages, 6 figures, uses REVTeX 4, submitted to Phys. Rev.

    Determination of S17 from 8B breakup by means of the method of continuum-discretized coupled-channels

    Full text link
    The astrophysical factor for 7Be(p,\gamma)8B at zero energy, S17(0), is determined from an analysis of 208Pb(8B, p+7Be)208Pb at 52 MeV/nucleon by means of the method of continuum-discretized coupled-channels (CDCC) taking account of all nuclear and Coulomb breakup processes. The asymptotic normalization coefficient (ANC) method is used to extract S17(0) from the calculated breakup-cross-section. The main result of the present paper is S17(0)=20.9 +2.0/-1.9 eV b. The error consists of 8.4% experimental systematic error and the error due to the ambiguity in the s-wave p-7Be scattering length. This value of S17(0) differs from the one extracted with the first-order perturbation theory including Coulomb breakup by dipole transitions: 18.9 +/- 1.8 eV b. It turns out that the difference is due to the inclusion of the nuclear and Coulomb-quadrupole transitions and multi-step processes of all-order in the present work. The p-7Be interaction potential used in the CDCC calculation is also used in the ANC analysis of 7Be(p,\gamma)8B. The value of S17(0)=21.7 +0.62/-0.55 eV b obtained is consistent with the previous one obtained from a precise measurement of the p-capture reaction cross section extrapolated to zero incident energy, S17(0)=22.1 +/- 0.6 (expt) +/- 0.6 (theo) eV b, where (theo) stands for the error in the extrapolation. Thus, the agreement between the values of S17(0) obtained from direct 7Be(p,\gamma)8B and indirect 8B-breakup measurements is significantly improved.Comment: 13 pages, 9 figures, published in PR

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    Scalar field localization on a brane with cosmological constant

    Get PDF
    We address the localization of a scalar field, whose bulk-mass M is considered in a wide range including the tachyonic region,on a three-brane. The brane with non-zero cosmological constant λ\lambda is embedded in five dimensional bulk space. We find in this case that the trapped scalar could have mass mm which has an upper bound and expressed as m2=m02+αM2βλm^2=m_0^2+\alpha M^2\leq \beta |\lambda| with the calculable numbers m02,α,βm_0^2, \alpha, \beta. We point out that this result would be important to study the stability of the brane and cosmological problems based on the brane-world.Comment: 14 pages, 5 figure

    Localization of Gravity on Brane Embedded in AdS5AdS_5 and dS5dS_5

    Get PDF
    We address the localization of gravity on the Friedmann-Robertson-Walker type brane embedded in either AdS5AdS_{5} or dS5dS_{5} bulk space,and derive two definite limits between which the value of the bulk cosmological constant has to lie in order to localize the graviton on the brane.The lower limit implies that the brane should be either dS4dS_{4} or 4d Minkowski in the AdS5AdS_{5} bulk.The positive upper limit indicates that the gravity can be trapped also on curved brane in the dS5dS_{5} bulk space.Some implications to recent cosmological scenarios are also discussed.Comment: 18 pages, 3 figures, Latex fil

    Cosmological Constraints on Newton's Constant

    Full text link
    We present cosmological constraints on deviations of Newton's constant at large scales, analyzing latest cosmic microwave background (CMB) anisotropies and primordial abundances of light elements synthesized by big bang nucleosynthesis (BBN). BBN limits the possible deviation at typical scales of BBN epoch, say at 10^8 \sim 10^12m, to lie between -5% and +1% of the experimental value, and CMB restricts the deviation at larger scales 10^2 \sim 10^9pc to be between -26% and +66% at the 2\sigma confidence level. The cosmological constraints are compared with the astronomical one from the evolution of isochrone of globular clusters.Comment: 4 pages, 5 figure

    Evolution of Thick Walls in Curved Spacetimes

    Full text link
    We generalize our previous thick shell formalism to incorporate any codimension-1 thick wall with a peculiar velocity and proper thickness bounded by arbitrary spacetimes. Within this new formulation we obtain the equation of motion of a spherically symmetric dust thick shell immersed in vacuum as well as in Friedmann-Robertson-Walker spacetimes.Comment: 8 pages, 1 figur

    Equation of state in the PNJL model with the entanglement interaction

    Full text link
    The equation of state and the phase diagram in two-flavor QCD are investigated by the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model with an entanglement vertex between the chiral condensate and the Polyakov-loop. The entanglement-PNJL (EPNJL) model reproduces LQCD data at zero and finite chemical potential better than the PNJL model. Hadronic degrees of freedom are taken into account by the free-hadron-gas (FHG) model with the volume-exclusion effect due to the hadron generation. The EPNJL+FHG model improves agreement of the EPNJL model with LQCD data particularly at small temperature. The quarkyonic phase survives, even if the correlation between the chiral condensate and the Polyakov loop is strong and hadron degrees of freedom are taken into account. However, the location of the quarkyonic phase is sensitive to the strength of the volume exclusion.Comment: 9 pages, 7 figure
    corecore