36,884 research outputs found

    Analysis and design of integration formulas for a random integrand

    Get PDF
    Analysis of integration formulas and procedure for designing optimal integration formul

    A suspended microchannel with integrated temperature sensors for high-pressure flow studies

    Get PDF
    A freestanding microchannel, with integrated temperature sensors, has been developed for high-pressure flow studies. These microchannels are approximately 20μm x 2μm x 4400μm, and are suspended above 80 μm deep cavities, bulk micromachined using BrF3 dry etch. The calibration of the lightly boron-doped thermistor-type sensors shows that the resistance sensitivity of these integrated sensors is parabolic with respect to temperature and linear with respect to pressure. Volumetric flow rates of N2 in the microchannel were measured at inlet pressures up to 578 psig. The discrepancy between the data and theory results from the flow acceleration in a channel, the non-parabolic velocity profile, and the bulging of the channel. Bulging effects were evaluated by using incompressible water flow measurements, which also measures 1.045x10^-3N-s/m^2 for the viscosity of DI water. The temperature data from sensors on the channel shows the heating of the channel due to the friction generated by the high-pressure flow inside

    The inferior caval vein draining into the left atrial cavity : a rare case

    Get PDF
    The inferior vena cava (IVC) draining into the left atrium (LA) is exceedingly rare in the setting of the usual atrial arrangement (situs solitus). This article describes a patient with this unique anomaly, and its repair.peer-reviewe

    Micro heat exchanger by using MEMS impinging jets

    Get PDF
    A micro impinging-jet heat exchanger is presented here. Heat transfer is studied for single jet, slot arrays and jet arrays. In order to facilitate micro heat transfer measurements with these devices, a MEMS sensor chip, which has an 8 x 8 temperature-sensor array on one side, and an integrated heater on the other side has been designed and fabricated. This sensor chip allows 2-D surface temperature measurement with various jets impinging on it. It is found that micro impinging jets can be highly efficient when compared to existing macro impinging-jet microelectronics packages such as IBM 4381. For example, using a single nozzle jet (500-μm diameter driven by 5 psig pressure), the sensor chip (2 x 2 cm^2) temperature can be cooled down from 70 to 33°C. The cooling becomes more efficient when nozzle arrays (4x5 over 1 cm^2 area) are used under the same driving pressure. Interestingly, although higher driving pressure gives better cooling (lower surface temperature), the cooling efficiency, defined as h/0.5pv^2, is actually higher for lower driving pressure

    K*{\Lambda}(1116) photoproduction and nucleon resonances

    Full text link
    In this presentation, we report our recent studies on the KΛ(1116)K^*\Lambda(1116) photoproduction off the proton target, using the tree-level Born approximation, via the effective Lagrangian approach. In addition, we include the nine (three- or four-star confirmed) nucleon resonances below the threshold sth2008\sqrt{s}_\mathrm{th}\approx2008 MeV, to interpret the discrepancy between the experiment and previous theoretical studies, in the vicinity of the threshold region. From the numerical studies, we observe that the S11(1535)S_{11}(1535) and S11(1650)S_{11}(1650) play an important role for the cross-section enhancement near the sth\sqrt{s}_\mathrm{th}. It also turns out that, in order to reproduce the data, we have the vector coupling constants gKS11(1535)Λ=(7.09.0)g_{K^*S_{11}(1535)\Lambda}=(7.0\sim9.0) and gKS11(1650)Λ=(5.06.0)g_{K^*S_{11}(1650)\Lambda}=(5.0\sim6.0).Comment: 2 pages, 2 figures, talk given at International Conference on the structure of baryons, BARYONS'10, Dec. 7-11, 2010, Osaka, Japa

    Semimetalic graphene in a modulated electric potential

    Full text link
    The π\pi-electronic structure of graphene in the presence of a modulated electric potential is investigated by the tight-binding model. The low-energy electronic properties are strongly affected by the period and field strength. Such a field could modify the energy dispersions, destroy state degeneracy, and induce band-edge states. It should be noted that a modulated electric potential could make semiconducting graphene semimetallic, and that the onset period of such a transition relies on the field strength. There exist infinite Fermi-momentum states in sharply contrast with two crossing points (Dirac points) for graphene without external fields. The finite density of states (DOS) at the Fermi level means that there are free carriers, and, at the same time, the low DOS spectrum exhibits many prominent peaks, mainly owing to the band-edge states.Comment: 12pages, 5 figure

    "Low-state" Black Hole Accretion in Nearby Galaxies

    Full text link
    I summarize the main observational properties of low-luminosity AGNs in nearby galaxies to argue that they are the high-mass analogs of black hole X-ray binaries in the "low/hard" state. The principal characteristics of low-state AGNs can be accommodated with a scenario in which the central engine is comprised of three components: an optically thick, geometrically accretion disk with a truncated inner radius, a radiatively inefficient flow, and a compact jet.Comment: 8 pages. To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure

    Planar immersion lens with metasurfaces

    Get PDF
    The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue
    corecore