28,188 research outputs found
Validation of the English and Chinese versions of the Quick-FLIC quality of life questionnaire.
A useful measure of quality of life should be easy and quick to complete. Recently, we reported the development and validation of a shortened Chinese version of the Functional Living Index-Cancer (FLIC), which we called the Quick-FLIC. In the present study of 327 English-speaking and 221 Chinese-speaking cancer patients, we validated the English version of the Quick-FLIC and further assessed the Chinese version. The 11 Quick-FLIC items were administered alongside the 11 remaining items of the full FLIC, but there appeared to be little context effect. Validity of the English version of the Quick-FLIC was attested by its strong correlation with two other measures of quality of life, and its ability to detect differences between patients with different performance status and treatment status (each P<0.001). Its internal consistency (alpha=0.86) and test-retest reliability (intraclass correlation=0.76) were also satisfactory. The measure was responsive to changes in performance status (P<0.001). The Chinese version showed similar characteristics. The Quick-FLIC behaved in ways that are highly comparable with the FLIC, even though the Quick-FLIC comprised only 11 items whereas the FLIC comprised 22. Further research is required to see whether the use of shorter instruments can improve data quality and response rates, but the fact that shorter instruments place less burden on the patients is itself inherently important
The origins of the gamma-ray flux variations of NGC 1275 based on 8 years of Fermi-LAT observations
We present an analysis of 8 years of Fermi-LAT ( > 0.1 GeV) gamma-ray data
obtained for the radio galaxy NGC 1275. The gamma-ray flux from NGC 1275 is
highly variable on short (~ days to weeks) timescales, and has steadily
increased over this 8-year timespan. By examining the changes in its flux and
spectral shape in the LAT energy band over the entire dataset, we found that
its spectral behavior changed around 2011 February (~ MJD 55600). The gamma-ray
spectra at the early times evolve largely at high energies, while the photon
indices were unchanged in the latter times despite rather large flux
variations. To explain these observations, we suggest that the flux changes in
the early times were caused by injection of high-energy electrons into the jet,
while later, the gamma-ray flares were caused by a changing Doppler factor
owing to variations in the jet Lorentz factor and/or changes in the angle to
our line of sight. To demonstrate the viability of these scenarios, we fit the
broad-band spectral energy distribution data with a one-zone synchrotron
self-Compton (SSC) model for flaring and quiescent intervals before and after
2011 February. To explain the gamma-ray spectral behavior in the context of the
SSC model, the maximum electron Lorentz factor would have changed in the early
times, while a modest change in the Doppler factor adequately fits the
quiescent and flaring state gamma-ray spectra in the later times.Comment: 13 pages, 9 figures; accepted for publication in Ap
Re-parameterization Invariance in Fractional Flux Periodicity
We analyze a common feature of a nontrivial fractional flux periodicity in
two-dimensional systems. We demonstrate that an addition of fractional flux can
be absorbed into re-parameterization of quantum numbers. For an exact
fractional periodicity, all the electronic states undergo the
re-parameterization, whereas for an approximate periodicity valid in a large
system, only the states near the Fermi level are involved in the
re-parameterization.Comment: 4 pages, 1 figure, minor changes, final version to appear in J. Phys.
Soc. Jp
Nonperturbative Determination of Heavy Meson Bound States
In this paper we obtain a heavy meson bound state equation from the heavy
quark equation of motion in heavy quark effective theory (HQET) and the heavy
meson effective field theory we developed very recently. The bound state
equation is a covariant extention of the light-front bound state equation for
heavy mesons derived from light-front QCD and HQET. We determine the covariant
heavy meson wave function variationally by minimizing the binding energy
. Subsequently the other basic HQET parameters and
, and the heavy quark masses and can also be
consistently determined.Comment: 15 pages, 1 figur
Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals
Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD
Confocal microscopic analysis of optical crosstalk in GaN micro-pixel light-emitting diodes
© 2015 AIP Publishing LLC. The optical crosstalk phenomenon in GaN micro-pixel light-emitting diodes (LED) has been investigated by confocal microscopy. Depth-resolved confocal emission images indicate light channeling along the GaN and sapphire layers as the source of crosstalk. Thin-film micro-pixel devices are proposed, whereby the light-trapping sapphire layers are removed by laser lift-off. Optical crosstalk is significantly reduced but not eliminated due to the remaining GaN layer. Another design involving micro-pixels which are completely isolated is further proposed; such devices exhibited low-noise and enhanced optical performances, which are important attributes for high-density micro-pixel LED applications including micro-displays and multi-channel optical communications.published_or_final_versio
Slip energy barriers in aluminum and implications for ductile versus brittle behavior
We conisder the brittle versus ductile behavior of aluminum in the framework
of the Peierls-model analysis of dislocation emission from a crack tip. To this
end, we perform first-principles quantum mechanical calculations for the
unstable stacking energy of aluminum along the Shockley partial
slip route. Our calculations are based on density functional theory and the
local density approximation and include full atomic and volume relaxation. We
find that in aluminum J/m. Within the Peierls-model
analysis, this value would predict a brittle solid which poses an interesting
problem since aluminum is typically considered ductile. The resolution may be
given by one of three possibilites: (a) Aluminum is indeed brittle at zero
temperature, and becomes ductile at a finite temperature due to motion of
pre-existing dislocations which relax the stress concentration at the crack
tip. (b) Dislocation emission at the crack tip is itself a thermally activated
process. (c) Aluminum is actually ductile at all temperatures and the
theoretical model employed needs to be significantly improved in order to
resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]
- …
