8,878 research outputs found

    Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation

    Full text link
    In order to increase the accelerating gradient of Superconducting Radio Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of its high transition temperature and potential for low surface resistance in the high RF field regime. However, due to the presence of the small superconducting gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite large compared to a single gap s-wave superconductor (SC) such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB2, as well as extrinsic sources, is an urgent requirement. A localized and strong RF magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that at least two mechanisms are responsible for this nonlinear response, one of which involves vortex nucleation and penetration into the film. [1] T. M. Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field Microwave Microscope for RF Defect Localization in Superconductors", IEEE Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure

    CP Violation in Fermion Pair Decays of Neutral Boson Particles

    Full text link
    We study CP violation in fermion pair decays of neutral boson particles with spin 0 or 1. We study a new asymmetry to measure CP violation in η,KLμ+μ\eta, K_L \rightarrow \mu^+\mu^- decays and discuss the possibility of measuring it experimentally. For the spin-1 particles case, we study CP violation in the decays of J/ψJ/\psi to SU(3)SU(3) octet baryon pairs. We show that these decays can be used to put stringent constraints on the electric dipole moments of Λ\Lambda, Σ\Sigma and Ξ\Xi.Comment: 14p, OZ-93/22, UM-93/89, OITS 51

    Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory

    Full text link
    We study the ground-state octet baryon masses and sigma terms using the covariant baryon chiral perturbation theory (ChPT) with the extended-on-mass-shell (EOMS) renormalization scheme up to next-to-next-to-next-to-leading order (N3^3LO). By adjusting the available 19 low-energy constants (LECs), a reasonable fit of the nf=2+1n_f=2+1 lattice quantum chromodynamics (LQCD) results from the PACS-CS, LHPC, HSC, QCDSF-UKQCD and NPLQCD collaborations is achieved. Finite-volume corrections to the lattice data are calculated self-consistently. Our study shows that N3^3LO BChPT describes better the light quark mass evolution of the lattice data than the NNLO BChPT does and the various lattice simulations seem to be consistent with each other. We also predict the pion and strangeness sigma terms of the octet baryons using the LECs determined in the fit of their masses. The predicted pion- and strangeness-nucleon sigma terms are σπN=43(1)(6)\sigma_{\pi N}=43(1)(6) MeV and σsN=126(24)(54)\sigma_{s N}=126(24)(54) MeV, respectively.Comment: 28 pages, 6 figures, minor revisions, typos corrected, version to appear in JHE

    The f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f_2'(1525), and K2(1430)K_2^*(1430) as dynamically generated states from vector meson - vector meson interaction

    Full text link
    We report on some recent developments in understanding the nature of the low-lying mesonic resonances f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f_2'(1525), and K2(1430)K_2^*(1430). In particular we show that these five resonances can be dynamically generated from vector meson--vector meson interaction in a coupled-channel unitary approach, which utilizes the phenomenologically very successful hidden-gauge Lagrangians to produce the interaction kernel between two vector mesons, which is then unitarized by the Bethe-Salpeter-equation method. The data on the strong decay branching ratios, total decay widths, and radiative decay widths of these five states, and on related J/ψJ/\psi decay processes can all be well described by such an approach. We also make predictions, compare them with the results of earlier studies, and highlight observables that if measured can be used to distinguish different pictures of these resonances.Comment: 9 pages; Invited talk at workshop CHIRAL'10, Valencia (Spain), June 21-24, 201

    Generation of spatially-separated spin entanglement in a triple quantum dot system

    Full text link
    We propose a novel method for the creation of spatially-separated spin entanglement by means of adiabatic passage of an external gate voltage in a triple quantum dot system.Comment: 10 pages, 6 figure

    Finite dimensional integrable Hamiltonian systems associated with DSI equation by Bargmann constraints

    Full text link
    The Davey-Stewartson I equation is a typical integrable equation in 2+1 dimensions. Its Lax system being essentially in 1+1 dimensional form has been found through nonlinearization from 2+1 dimensions to 1+1 dimensions. In the present paper, this essentially 1+1 dimensional Lax system is further nonlinearized into 1+0 dimensional Hamiltonian systems by taking the Bargmann constraints. It is shown that the resulting 1+0 dimensional Hamiltonian systems are completely integrable in Liouville sense by finding a full set of integrals of motion and proving their functional independence.Comment: 10 pages, in LaTeX, to be published in J. Phys. Soc. Jpn. 70 (2001

    Investigation of aged aerosols in size-resolved Asian dust storm particles transported from Beijing, China, to Incheon, Korea, using low-<i>Z</i> particle EPMA

    Get PDF
    This is the first study of Asian dust storm (ADS) particles collected in Beijing, China, and Incheon, Korea, during a spring ADS event. Using a seven-stage May impactor and a quantitative electron probe X-ray microanalysis (ED-EPMA, also known as low-<i>Z</i> particle EPMA), we examined the composition and morphology of 4200 aerosol particles at stages 1–6 (with a size cut-off of 16, 8, 4, 2, 1, and 0.5 μm in equivalent aerodynamic diameter, respectively) collected during an ADS event on 28–29 April 2005. The results showed that there were large differences in the chemical compositions between particles in sample S1 collected in Beijing immediately after the peak time of the ADS and in samples S2 and S3, which were collected in Incheon approximately 5 h and 24 h later, respectively. In sample S1, mineral dust particles accounted for more than 88% in relative number abundance at stages 1–5; and organic carbon (OC) and reacted NaCl-containing particles accounted for 24% and 32%, respectively, at stage 6. On the other hand, in samples S2 and S3, in addition to approximately 60% mineral dust, many sea spray aerosol (SSA) particles reacted with airborne SO<sub>2</sub> and NO<sub>x</sub> (accounting for 24% and 14% on average in samples S2 and S3, respectively), often mixed with mineral dust, were encountered at stages 1–5, and (C, N, O, S)-rich particles (likely a mixture of water-soluble organic carbon with (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and NH<sub>4</sub>NO<sub>3</sub>) were abundantly observed at stage 6 (accounting for 68% and 51% in samples S2 and S3, respectively). This suggests that an accumulation of sea-salt components on individual ADS particles larger than 1 μm in diameter occurred and many secondary aerosols smaller than 1 μm in diameter were formed when the ADS particles passed over the Yellow Sea. In the reacted or aged mineral dust and SSA particles, nitrate-containing and both nitrate- and sulfate-containing species vastly outnumbered the sulfate-containing species, implying that ambient NO<sub>x</sub> had a greater influence on the atmospheric particles than SO<sub>2</sub> during this ADS episode. In addition to partially- or totally-reacted CaCO<sub>3</sub>, reacted or aged Mg-containing aluminosilicates were observed frequently in samples S2 and S3; furthermore, a student's <i>t</i> test showed that both their atomic concentration ratios of [Mg] / [Al] and [Mg] / [Si] were significantly elevated (<i>P</i> < 0.05) compared to those in samples S1 (for [Mg] / [Al], 0.34 ± 0.09 and 0.40 ± 0.03 in samples S2 and S3, respectively, vs. 0.24 ± 0.01 in sample S1; for [Mg] / [Si], 0.21 ± 0.05 and 0.22 ± 0.01 in samples S2 and S3, respectively, vs. 0.12 ± 0.02 in sample S1). The significant increase of [Mg] / [Al] and [Mg] / [Si] ratios in Mg-containing aluminosilicates indicates that a significant evolution or aging must have occurred on the ADS particles in the marine atmosphere during transport from China to Korea

    Generalized r-matrix structure and algebro-geometric solution for integrable systems

    Full text link
    The purpose of this paper is to construct a generalized r-matrix structure of finite dimensional systems and an approach to obtain the algebro-geometric solutions of integrable nonlinear evolution equations (NLEEs). Our starting point is a generalized Lax matrix instead of usual Lax pair. The generalized r-matrix structure and Hamiltonian functions are presented on the basis of fundamental Poisson bracket. It can be clearly seen that various nonlinear constrained (c-) and restricted (r-) systems, such as the c-AKNS, c-MKdV, c-Toda, r-Toda, c-Levi, etc, are derived from the reduction of this structure. All these nonlinear systems have {\it r}-matrices, and are completely integrable in Liouville's sense. Furthermore, our generalized structure is developed to become an approach to obtain the algebro-geometric solutions of integrable NLEEs. Finally, the two typical examples are considered to illustrate this approach: the infinite or periodic Toda lattice equation and the AKNS equation with the condition of decay at infinity or periodic boundary.Comment: 41 pages, 0 figure
    corecore