3,955 research outputs found
Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath
Transport critical current (Ic) was measured for Fe-sheathed MgB2 round
wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K.
Strong magnetic shielding by the iron sheath was observed, resulting in a
decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding,
interaction between the iron sheath and the superconductor resulted in a
constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for
effective shielding of 0.2T. This effect can be used to substantially improve
the field performance of MgB2/Fe wires at fields at least 3 times higher than
the range allowed by mere magnetic shielding by the iron sheath. The dependence
of Ic on the angle between field and current showed that the transport current
does not flow straight across the wire, but meanders between the grains
Comparison of small-field behavior in MgB2, Low- and high-temperature superconductors
Different types of superconductors have been investigated at small magnetic fields (Ba) over wide temperature (T) ranges at different Ba orientations. It has been shown that the temperature dependence of the characteristic field (B*), separating the Ba-independent critical current density (Jc) plateau (single vortex pinning regime) and the region with Jc(Ba) (collective pinning), can be attributed either to the temperature dependence of the magnetic penetration depth for Nb-film and MgB2 bulk superconductors, or to thermally activated processes for Bi-based superconductors and YBa2Cu3O7−8 superconducting films. In both cases the vortex pinning influence appears to have a secondary role, affecting the effective vortex depinning radius. An exception in such B*(T) behavior is considered for Nb film when the magnetic field has its considerable component applied perpendicular to the main surface of the film
Properties of superconducting MgB_2 wires: "in-situ" versus "ex-situ" reaction technique
We have fabricated a series of iron-sheathed superconducting wires prepared
by the powder-in-tube technique from (MgB_2)_{1-x}:(Mg+2B)_x initial powder
mixtures taken with different proportions, so that x varies from 0 to 1. It
turned out that "ex-situ" prepared wire (x = 0) has considerable disadvantages
compared to all the other wires in which "in-situ" assisted (0 < x < 1) or pure
"in-situ" (x = 1) preparation was used due to weaker inter-grain connectivity.
As a result, higher critical current densities J_c were measured over the
entire range of applied magnetic fields B_a for all the samples with x > 0.
Pinning of vortices in MgB_2 wires is shown to be due to grain boundaries.
J_c(B_a) behavior is governed by an interplay between the transparency of grain
boundaries and the amount of "pinning" grain boundaries. Differences between
thermo-magnetic flux-jump instabilities in the samples and a possible threat to
practical applications are also discussed.Comment: To be published in Supercond. Sci. Technol. (2003), in pres
Effect of carbon nanotube doping on critical current density of MgB2 superconductor
The effect of doping MgB2 with carbon nanotubes on transition temperature,
lattice parameters, critical current density and flux pinning was studied for
MgB2-xCx with x = 0, 0.05, 0.1, 0.2 and 0.3. The carbon substitution for B was
found to enhance Jc in magnetic fields but depress Tc. The depression of Tc,
which is caused by the carbon substitution for B, increases with increasing
doping level, sintering temperature and duration. By controlling the extent of
the substitution and addition of carbon nanotubes we can achieve the optimal
improvement on critical current density and flux pinning in magnetic fields
while maintaining the minimum reduction in Tc. Under these conditions, Jc was
enhanced by two orders of magnitude at 8T and 5K and 7T and 10K. Jc was more
than 10,000A/cm2 at 20K and 4T and 5K and 8.5T, respectively
Lattice paramenter, lattice disorder and resistivity of carbohydrate doepd MgB2 and their correlation with the transition temperature
The change in the lattice parameters or the lattice disorder is claimed as a
cause of the slight reduction in the transition temperature by carbon doping in
MgB2. In this work, an extensive investigation on the effects of carbohydrate
doping has been carried out. It is found that not only the a-axis but also the
c-axis lattice parameter increases with the sintering temperature. A linear
relation between the unit cell volume and the critical temperature is observed.
Compared with the well known correlation between the lattice strain and the
critical temperature, the X-ray peak broadening itself shows a closer
correlation with the transition temperature. The residual resistivity and the
critical temperature are linearly correlated with each other as well and its
implication is further discussed.Comment: 3 pages. Accepted by Jouranl of nanoscience and Nanotechnology (JNN
- …