23 research outputs found

    The influnece of the partial single reduction on mechanical properties wires made from trip steel with 0,43 % C

    Get PDF
    Large strain inhomogeneity is caused by the shape of deformation zone of die and by the friction between tool and deformed wire for multistage wire drawing processes. The influence on the value of the redundant strain by the use of different partial single reductions during all wire drawing process was observed. This problem is particularly important for TRIP steel wires drawing processes because the strain intensity influences on the speed of retained austenite transformation into martensite

    Analysis the influence of drawing process parameters on the amount of retained austenite in trip steel wires

    Get PDF
    The paper presents a theoretical analysis of the process of drawing TRIP-effect steel wires involving simulation of the drawing process. The process was run following two variants, with small and large partial drafts for three drawing speeds: 1,11; 0,23 and 0,005 m/s. The investigations carried out allowed a relationship between the amount of retained austenite and strain intensity and strain rate to be established for TRIP steel wires drawn

    The influence of drawing parameters on the properties high-manganese TWIP steel wires

    Get PDF
    The paper presents an experimental analysis of the effect of single draft magnitude in the multi-stage drawing process on the mechanical properties of the wire, and a theoretical process analysis aimed at identifying the causes of the variations in mechanical properties, made using Drawing 2D, a FEM-relying software program of high manganese TWIP steel rolling and stamping processes. It was found that wires drawn with small partial drafts (Gp%=11 %) had a larger plasticity reserve, as defined by the R0.2/Rm ratio, as compared with wires drawn with large partial drafts (Gp = 26 %). A drop both in tensile strength Rm and in proof stress R0.2 was also found to occur after a total draft of Gc = 80 % had been exceeded, which was caused by the “strain softening” phenomenon

    Analiza wpływu parametrów procesu ciągnienia na własności mechaniczne drutów ze stali o strukturze typu TRIP

    No full text
    The research concerned with wire drawing processes of medium-carbon steel with TRIP effect classified into group of AHSS (Advanced High Strength Steel) steels, which are the multiphase steels offering a unique combination of high strength and ductility, has been shown in the work. Such combination is achieved through the transformation of retained austenite to martensite in deformation process called TRIP effect (Transformation Induced Plasticity). Studies reported in the literature relate mainly to the research on the car body sheet rolling and heat treatment processes, which does not allow the results of this research to be referred to the analysis of drawing processes. Therefore, the need has arisen for developing and conducting comprehensive studies on the process of drawing TRIP steels wires and identification the new application areas for these materials.W pracy przedstwiono badania dotyczące procesu ciągnienia drutów ze stali typu TRIP zaliczanej do grupy stali AHSS (Advanced High Strength Steel), charakteryzującą się wyjątkową kombinacją pomiędzy własnościami wytrzymałościowymi a plastycznością. Korzystna korelacja własności zostaje w tych stalach osiągnieta w wyniku przemiany austenitu szczątkowego w martenzyt w procesach odkształcenia, i nosi miano efektu TRIP (Transformation Induced Plasticity). Zawarte w literaturze opracowania dotyczą głównie badań nad procesami walcowania i obróbki cieplnej blach karoseryjnych, co nie pozwala na odniesienie wyników tych badań do analizy procesów ciągnienia. W procesie ciągnienia zarówno wielkości odkształcenia całkowitego, jak i prędkości odkształcenia są wielokrotnie wyższe, co znacząco wpływa na obecność efektu TRIP, a co za tym idzie na własności materiału. Zaistniała zatem konieczność opracowania i przeprowadzenia kompleksowych badań procesu ciągnienia drutów ze stali z efektem TRIP oraz określenia nowych obszarów zastosowan dla tego typu materiałów

    Wpływ zawartości węgla na ilość austenitu szczątkowego i własności mechaniczne walcówki o strukturze TRIP otrzymanej na linii regulowanego chłodzenia Stelmor

    No full text
    The austenite content of the multiphase TRIP-structure steels depends, inter alia, on the carbon concentration and the properly selected parameters of the two-stage heat treatment. Under the existing industrial conditions, it is possible to (approximately) reproduce approximately the optimal parameters of the two-stage wire rod heat treatment via the controlled wire rod cooling from the end temperature of rolling on the Stelmor line. The investigation of the retained austenite content of TRIP wire rods with a varying carbon concentration, produced under industrial conditions, has been discussed and the effect of the multiphase structure of these wire rods on their mechanical properties has been determined in the paper.Ilość austenitu w wielofazowych stalach o strukturze TRIP zależy miedzy innymi od zawartości węgla oraz odpowiednio dobranych parametrów dwustopniowej obróbki cieplnej. W warunkach przemysłowych, przybliżone odwzorowanie optymalnych parametrów dwustopniowej obróbki cieplnej walcówki jest możliwe poprzez jej regulowane chłodzenie, z temperatury końca walcowania na linii Stelmor. W pracy przedstawiono badania ilości austenitu szczątkowego w walcówkach TRIP o różnej zawartości węgla, otrzymanych w warunkach przemysłowych oraz określono wpływ wielofazowej struktury tych walcówek na ich własności mechaniczne

    The Effect Of Carbon Concentration On The Retained Austenite Content And The Mechanical Properties Of TRIP Steel Wire Rod Obtained From The Stelmor Controlled Cooling Line

    No full text
    The austenite content of the multiphase TRIP-structure steels depends, inter alia, on the carbon concentration and the properly selected parameters of the two-stage heat treatment. Under the existing industrial conditions, it is possible to (approximately) reproduce approximately the optimal parameters of the two-stage wire rod heat treatment via the controlled wire rod cooling from the end temperature of rolling on the Stelmor line. The investigation of the retained austenite content of TRIP wire rods with a varying carbon concentration, produced under industrial conditions, has been discussed and the effect of the multiphase structure of these wire rods on their mechanical properties has been determined in the paper.Ilość austenitu w wielofazowych stalach o strukturze TRIP zależy miedzy innymi od zawartości węgla oraz odpowiednio dobranych parametrów dwustopniowej obróbki cieplnej. W warunkach przemysłowych, przybliżone odwzorowanie optymalnych parametrów dwustopniowej obróbki cieplnej walcówki jest możliwe poprzez jej regulowane chłodzenie, z temperatury końca walcowania na linii Stelmor. W pracy przedstawiono badania ilości austenitu szczątkowego w walcówkach TRIP o różnej zawartości węgla, otrzymanych w warunkach przemysłowych oraz określono wpływ wielofazowej struktury tych walcówek na ich własności mechaniczne

    The Assessment Of The Structure And Properties Of High-Carbon Steel Wires After The Process Of Patenting With Induction Heating

    No full text
    One of the most important types of heat treatment that high-carbon steel wires are subjected to is the patenting treatment. This process is conducted with the aim of obtaining a fine-grained uniform pearlitic structure which will be susceptible to plastic deformation in drawing processes. Patenting involves two-stage heat treatment that includes heating the wire up to the temperature above Ac3 in a continuous heating furnace (in the temperature range of 850÷1050°C) followed by a rapid cooling in a tank with a lead bath down to the temperature range of 450÷550°C. The patenting process is most significantly influenced by the chemistry of the steel being treated, as well as by the temperature and the rate of heating and cooling of the wire rod or wire being patented. So far, heating up to the austenitizing temperature has been conducted in several-zone continuous gas-fired or electric furnaces. Recently, attempts have been made in a drawing mill to replace this type of furnace with fast induction heating, which should bring about an energy saving, as well as a reduced quantity of scale on the patented wire. This paper presents the analysis of the structure and mechanical properties of wires of high-carbon steel with a carbon content of 0.76%C after the patenting process using induction heating for different levels of the coil induction power.Jednym z najważniejszych rodzajów obróbki cieplnej jakim poddaje się druty ze stali wysokowęglowych jest zabieg patentowania. Proces ten prowadzi się w celu otrzymania drobnoziarnistej, jednolitej struktury perlitycznej, która będzie podatna na odkształcenia plastyczne w procesach ciągnienia. Patentowanie polega na dwustopniowej obróbce cieplnej składającej się z procesu nagrzewania drutu do temperatury powyżej Ac3 w piecu grzewczym przelotowym (zakres temperatur 850÷1050°C) i następnie szybkim schłodzeniu w wannie z kąpielą ołowiową do zakresu temperatur 450÷550°C. Na proces patentowania najistotniejszy wpływ ma skład chemiczny obrabianej stali a także temperatura i szybkość nagrzewania oraz chłodzenia patentowanej walcówki lub drutów. Dotychczas nagrzewanie do temperatury austenityzacji realizowane jest w kilkustrefowych przelotowych piecach gazowych lub elektrycznych. Ostatnio w jednym z zakładów ciągarskich podjęto próby zastąpienia tego typu pieca szybkim nagrzewaniem indukcyjnym, co powinno zaowocować oszczędnością energii, jak i mniejszą ilością zgorzeliny na patentowanych drutach. W pracy przedstawiono analizę struktury i własności mechanicznych drutów ze stali wysokowęglowej o zawartości 0.76%C po procesie patentowania z wykorzystaniem indukcyjnego nagrzewania dla różnych poziomów mocy wzbudzenia induktora

    New Unconventional Processes of Plastic Forming of the Internal Toothing of Coupling Spline Sleeves

    No full text
    The article explores the possibility of using the authors’ three new methods of unconventional extrusion of deep hollows to be used for the manufacture of spline sleeves intended for internal toothing couplings. Two invention patents, PL206466 and PL224121, and one patent application, P.416772, were used for this purpose. Numerical computations were made in the Forge®3D program for the conceptual schemes of forming sleeves. The aim of those computations was to determine the extrusion forces and to compare them with the conventional indirect and direct extrusion methods. Then, on models based on the authors’ plastic forming schemes, numerical computations were made, from which the actual energy and force parameters were determined in the form of the relationship of extrusion force versus forming tool path. Also, the degree of fill of the passes, in which spline sleeve toothing is formed, was determined

    Ocena struktury i własności drutów ze stali wysokowęglowych po procesie patentowania z indukcyjnym nagrzewaniem

    No full text
    One of the most important types of heat treatment that high-carbon steel wires are subjected to is the patenting treatment. This process is conducted with the aim of obtaining a fine-grained uniform pearlitic structure which will be susceptible to plastic deformation in drawing processes. Patenting involves two-stage heat treatment that includes heating the wire up to the temperature above Ac3 in a continuous heating furnace (in the temperature range of 850÷1050°C) followed by a rapid cooling in a tank with a lead bath down to the temperature range of 450÷550°C. The patenting process is most significantly influenced by the chemistry of the steel being treated, as well as by the temperature and the rate of heating and cooling of the wire rod or wire being patented. So far, heating up to the austenitizing temperature has been conducted in several-zone continuous gas-fired or electric furnaces. Recently, attempts have been made in a drawing mill to replace this type of furnace with fast induction heating, which should bring about an energy saving, as well as a reduced quantity of scale on the patented wire. This paper presents the analysis of the structure and mechanical properties of wires of high-carbon steel with a carbon content of 0.76%C after the patenting process using induction heating for different levels of the coil induction power.Jednym z najważniejszych rodzajów obróbki cieplnej jakim poddaje się druty ze stali wysokowęglowych jest zabieg patentowania. Proces ten prowadzi się w celu otrzymania drobnoziarnistej, jednolitej struktury perlitycznej, która będzie podatna na odkształcenia plastyczne w procesach ciągnienia. Patentowanie polega na dwustopniowej obróbce cieplnej składającej się z procesu nagrzewania drutu do temperatury powyżej Ac3 w piecu grzewczym przelotowym (zakres temperatur 850÷1050°C) i następnie szybkim schłodzeniu w wannie z kąpielą ołowiową do zakresu temperatur 450÷550°C. Na proces patentowania najistotniejszy wpływ ma skład chemiczny obrabianej stali a także temperatura i szybkość nagrzewania oraz chłodzenia patentowanej walcówki lub drutów. Dotychczas nagrzewanie do temperatury austenityzacji realizowane jest w kilkustrefowych przelotowych piecach gazowych lub elektrycznych. Ostatnio w jednym z zakładów ciągarskich podjęto próby zastąpienia tego typu pieca szybkim nagrzewaniem indukcyjnym, co powinno zaowocować oszczędnością energii, jak i mniejszą ilością zgorzeliny na patentowanych drutach. W pracy przedstawiono analizę struktury i własności mechanicznych drutów ze stali wysokowęglowej o zawartości 0.76%C po procesie patentowania z wykorzystaniem indukcyjnego nagrzewania dla różnych poziomów mocy wzbudzenia induktora
    corecore