12 research outputs found

    Omega-3 Fatty Acids and Heart Rhythm, Rate, and Variability in Atrial Fibrillation.

    Get PDF
    Background Previous randomized control trials showed mixed results concerning the effect of omega-3 fatty acids (n-3 FAs) on atrial fibrillation (AF). The associations of n-3 FA blood levels with heart rhythm in patients with established AF are unknown. The goal of this study was to assess the associations of total and individual n-3 FA blood levels with AF type (paroxysmal versus nonparoxysmal), heart rate (HR), and HR variability in patients with AF. Methods and Results Total n-3 FAs, eicosapentaenoic acid, docosahexaenoic acid, docosapentaenoic acid, and alpha-linolenic acid blood levels were determined in 1969 patients with known AF from the SWISS-AF (Swiss Atrial Fibrillation cohort). Individual and total n-3 FAs were correlated with type of AF, HR, and HR variability using standard logistic and linear regression, adjusted for potential confounders. Only a mild association with nonparoxysmal AF was found with total n-3 FA (odds ratio [OR], 0.97 [95% CI, 0.89-1.05]) and docosahexaenoic acid (OR, 0.93 [95% CI, 0.82-1.06]), whereas other individual n-3 FAs showed no association with nonparoxysmal AF. Higher total n-3 FAs (estimate 0.99 [95% CI, 0.98-1.00]) and higher docosahexaenoic acid (0.99 [95% CI, 0.97-1.00]) tended to be associated with slower HR in multivariate analysis. Docosapentaenoic acid was associated with a lower HR variability triangular index (0.94 [95% CI, 0.89-0.99]). Conclusions We found no strong evidence for an association of n-3 FA blood levels with AF type, but higher total n-3 FA levels and docosahexaenoic acid might correlate with lower HR, and docosapentaenoic acid with a lower HR variability triangular index

    Risk of Stroke before Revascularisation in Patients with Symptomatic Carotid Stenosis: A Pooled Analysis of Randomised Controlled Trials.

    Get PDF
    OBJECTIVE: Current guidelines recommending rapid revascularisation of symptomatic carotid stenosis are largely based on data from clinical trials performed at a time when best medical therapy was potentially less effective than today. The risk of stroke and its predictors among patients with symptomatic carotid stenosis awaiting revascularisation in recent randomised controlled trials (RCTs) and in medical arms of earlier RCTs was assessed. METHODS: The pooled data of individual patients with symptomatic carotid stenosis randomised to stenting (CAS) or endarterectomy (CEA) in four recent RCTs, and of patients randomised to medical therapy in three earlier RCTs comparing CEA vs. medical therapy, were compared. The primary outcome event was any stroke occurring between randomisation and treatment by CAS or CEA, or within 120 days after randomisation. RESULTS: A total of 4 754 patients from recent trials and 1 227 from earlier trials were included. In recent trials, patients were randomised a median of 18 (IQR 7, 50) days after the qualifying event (QE). Twenty-three suffered a stroke while waiting for revascularisation (cumulative 120 day risk 1.97%, 95% confidence interval [CI] 0.75 - 3.17). Shorter time from QE until randomisation increased stroke risk after randomisation (χ2 = 6.58, p = .011). Sixty-one patients had a stroke within 120 days of randomisation in the medical arms of earlier trials (cumulative risk 5%, 95% CI 3.8 - 6.2). Stroke risk was lower in recent than earlier trials when adjusted for time between QE and randomisation, age, severity of QE, and degree of carotid stenosis (HR 0.47, 95% CI 0.25 - 0.88, p = .019). CONCLUSION: Patients with symptomatic carotid stenosis enrolled in recent large RCTs had a lower risk of stroke after randomisation than historical controls. The added benefit of carotid revascularisation to modern medical care needs to be revisited in future studies. Until then, adhering to current recommendations for early revascularisation of patients with symptomatic carotid stenosis considered to require invasive treatment is advisable
    corecore