615 research outputs found

    Multimode Hong-Ou-Mandel interference

    Full text link
    We consider multimode two-photon interference at a beam splitter by photons created by spontaneous parametric down-conversion. The resulting interference pattern is shown to depend upon the transverse spatial symmetry of the pump beam. In an experiment, we employ the first-order Hermite-Gaussian modes in order to show that, by manipulating the pump beam, one can control the resulting two-photon interference behavior. We expect these results to play an important role in the engineering of quantum states of light for use in quantum information processing and quantum imaging.Comment: 4 pages, 6 figures, submitted to PR

    Optical Bell-state analysis in the coincidence basis

    Full text link
    Many quantum information protocols require a Bell-state measurement of entangled systems. Most optical Bell-state measurements utilize two-photon interference at a beam splitter. By creating polarization-entangled photons with spontaneous parametric down-conversion using a first-order Hermite-Gaussian pump beam, we invert the usual interference behavior and perform an incomplete Bell-state measurement in the coincidence basis. We discuss the possibility of a complete Bell-state measurement in the coincidence basis using hyperentangled states [Phys. Rev. A, \textbf{58}, R2623 (1998)].Comment: 5 pages, 5 figure

    The Correlation between X-Ray Line Ionization and Optical Spectral Types of the OB Stars

    Full text link
    Marked correlations are reported between the ionization of the X-ray line spectra of normal OB stars, as observed by the Chandra X-Ray Observatory, and their optical spectral types. These correlations include the progressive weakening of the higher ionization relative to the lower ionization X-ray lines with advancing spectral type, and the similarly decreasing intensity ratios of the H-like to He-like lines of the alpha ions. These relationships were not predicted by models, nor have they been clearly evident in astrophysical studies of a few objects; rather, they have emerged from morphological analysis of an adequate (albeit still small) sample, from which known peculiar objects such as magnetic stars and very rapid rotators have been isolated to reveal the normal trends. This process is analogous to that which first demonstrated the strong relationships between the UV wind profiles and the optical spectral types of normal OB stars, which likely bear a physical as well as a historical connection to the present X-ray results. Since the optical spectral types are calibrated in terms of fundamental stellar parameters, it follows that the winds and X-ray spectra are determined by the latter. These observations provide strong guidance for further astrophysical modeling of these phenomena.Comment: 19 pages, 7 figures, 2 tables; ApJ accepte

    Quantum communication without alignment using multiple-qubit single-photon states

    Full text link
    We propose a scheme for encoding logical qubits in a subspace protected against collective rotations around the propagation axis using the polarization and transverse spatial degrees of freedom of single photons. This encoding allows for quantum key distribution without the need of a shared reference frame. We present methods to generate entangled states of two logical qubits using present day down-conversion sources and linear optics, and show that the application of these entangled logical states to quantum information schemes allows for alignment-free tests of Bell's inequalities, quantum dense coding and quantum teleportation

    Spatial correlations in parametric down-conversion

    Full text link
    The transverse spatial effects observed in photon pairs produced by parametric down-conversion provide a robust and fertile testing ground for studies of quantum mechanics, non-classical states of light, correlated imaging and quantum information. Over the last 20 years there has been much progress in this area, ranging from technical advances and applications such as quantum imaging to investigations of fundamental aspects of quantum physics such as complementarity relations, Bell's inequality violation and entanglement. The field has grown immensely: a quick search shows that there are hundreds of papers published in this field. The objective of this article is to review the building blocks and major theoretical and experimental advances in the field, along with some possible technical applications and connections to other research areas.Comment: 116 pages, 35 figures. To appear in Physics Report
    • …
    corecore