59 research outputs found
Ongoing monitoring of Tortugas Ecological Reserve: Assessing the consequences of reserve designation
Over the past five years, a biogeographic characterization of Tortugas Ecological Reserve(TER) has been carried out to measure the post-implementation effects of TER as a refuge for exploited species. Our results demonstrate that there is substantial microalgal biomass at depths between 10 and 30 m in the soft sediments at the coral reef interface, and that this community may play an important role in the food web supporting reef organisms. In addition, preliminary
stable isotope data, in conjunction with prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be an important source of the primary production ultimately fueling fish production throughout TER. The
majority of the fish analyzed so far have exhibited a C isotope signature consistent with a food web which relies heavily on benthic primary production. Fish counts indicate a marked increase in the abundance of large fish (>20 cm) within the Reserve relative to the Out and Park strata,
across years. Faunal collections from open and protected soft bottom habitat near the northern boundary of Tortugas North strongly suggest that relaxation of trawling pressure has increased benthic biomass and diversity in this area of TER. These data, employing an integrated Before -
After Control Impact (BACI) design at multiple spatial scales, will allow us to continue to document and quantify the post-implementation effects of TER. (PDF contains 58 pages
Testing "microscopic" theories of glass-forming liquids
We assess the validity of "microscopic" approaches of glass-forming liquids
based on the sole k nowledge of the static pair density correlations. To do so
we apply them to a benchmark provided by two liquid models that share very
similar static pair density correlation functions while disp laying distinct
temperature evolutions of their relaxation times. We find that the approaches
are unsuccessful in describing the difference in the dynamical behavior of the
two models. Our study is not exhausti ve, and we have not tested the effect of
adding corrections by including for instance three-body density correlations.
Yet, our results appear strong enough to challenge the claim that the slowd own
of relaxation in glass-forming liquids, for which it is well established that
the changes of the static structure factor with temperature are small, can be
explained by "microscopic" appr oaches only requiring the static pair density
correlations as nontrivial input.Comment: 10 pages, 7 figs; Accepted to EPJE Special Issue on The Physics of
Glasses. Arxiv version contains an addendum to the appendix which does not
appear in published versio
Assessment of natural resource conditions in and adjacent to Dry Tortugas National Park
This project characterized and assessed the condition of coastal water resources in the Dry Tortugas National Park (DRTO) located in the Florida Keys. The goal of the assessment was to: (1) identify the state of knowledge of natural resources that exist within the DRTO, (2) summarize the state of knowledge about natural and anthropogenic stressors and threats that affected these resources, and (3) describe strategies being implemented by DRTO managers to meet their resource management goals.
The park, located in the Straits of Florida 113 km (70 miles) west of Key West, is relatively small (269 square kilometers) with seven small islands and extensive shallow water coral reefs. Significant natural resources within DRTO include coastal and oceanic waters, coral reefs, reef fisheries, seagrass beds, and sea turtle and bird nesting habitats. This report focuses on marine natural resources identified by DRTO resource managers and researchers as being vitally important to the Tortugas region and the wider South Florida ecosystem. Selected marine resources included physical resources (geology, oceanography, and water quality) and biological resources (coral reef and hardbottom benthic assemblages, seagrass and algal communities, reef fishes and macro invertebrates, and wildlife [sea turtles and sea-birds]). In the past few decades, some of these resources have deteriorated because of natural and anthropogenic factors that are local and global in scale. To meet mandated goals (Chapter 1), resource managers need information on: (1) the types and condition of natural and cultural resources that occur within the park and (2) the stressors and threats that can affect those resources. This report synthesizes and summarizes information on: (1) the status of marine natural resources occurring at DRTO; and (2) types of stressors and threats currently affecting those resources at the DRTO.
Based on published information, the assessment suggests that marine resources at DRTO and its surrounding region are affected by several stressors, many of which act synergistically. Of the nine resource components assessed, one resource category â water quality â received an ecological condition ranking of "Good"; two components â the nonliving portion of coral reef and hardbottom and reef fishes â received a rating of "Caution"; and two components â the biotic components of coral reef and hardbottom substrates and sea turtles â received a rating of "Significant concern" (Table E-1). Seagrass and algal communities and seabirds were unrated for ecological condition because the available information was inadequate. The stressor category of tropical storms was the dominant and most prevalent stressor in the Tortugas region; it affected all of the resource components assessed in this report. Commercial and recreational fishing were also dominant stressors and affected 78% of the resource components assessed. The most stressed resource was the biotic component of coral reef and hardbottom resources, which was affected by 76% of the stressors. Water quality was the least affected; it was negatively affected by 12% of stressors. The systematic assessment of marine natural resources and stressors in the Tortugas region pointed to several gaps in the information. For example, of the nine marine resource components reviewed in this report, the living component of coral reefs and hardbottom resources had the best rated information with 25% of stressor categories rated "Good" for information richness. In contrast, the there was a paucity of information for seagrass and algal communities and sea birds resource components
Six priorities to advance the science and practice of coral reef restoration worldwide
Coral reef restoration is a rapidly growing movement galvanized by the accelerating degradation of the world's tropical coral reefs. The need for concerted and collaborative action focused on the recovery of coral reef ecosystems coalesced in the creation of the Coral Restoration Consortium (CRC) in 2017. In March 2020, the CRC leadership team met for a biennial review of international coral reef restoration efforts and a discussion of perceived knowledge and implementation bottlenecks that may impair scalability and efficacy. Herein we present six priorities wherein the CRC will foster scientific advancement and collaboration to: (1) increase restoration efficiency, focusing on scale and cost-effectiveness of deployment; (2) scale up larval-based coral restoration efforts, emphasizing recruit health, growth, and survival; (3) ensure restoration of threatened coral species proceeds within a population-genetics management context; (4) support a holistic approach to coral reef ecosystem restoration; (5) develop and promote the use of standardized terms and metrics for coral reef restoration; and (6) support coral reef restoration practitioners working in diverse geographic locations. These priorities are not exhaustive nor do we imply that accomplishing these tasks alone will be sufficient to restore coral reefs globally; rather these are topics where we feel the CRC community of practice can make timely and significant contributions to facilitate the growth of coral reef restoration as a practical conservation strategy. The goal for these collective actions is to provide tangible, local-scale advancements in reef condition that offset declines resulting from local and global stressors including climate change
Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway
Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins AâC), with cahuitamycin C being the most effective inhibitor (IC50=14.5âÎŒM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5âÎŒM).Great Lakes Regional Center of Excellence for Biodefense and Emerging Infectious Diseases/[U54 AI57153]/GLRCE/Estados UnidosArmy Research Office/[W911NF-12-1-0059]/ARO/Estados UnidosNational Institutes of Health/[1R01GM098350]/NIH/Estados UnidosInternational Cooperative Biodiversity Groups-Fogarty International Center/[U01 TW007404]/ICBG/Estados UnidosUCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones en Productos Naturales (CIPRONA
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 nonâcritically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (nâ=â257), ARB (nâ=â248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; nâ=â10), or no RAS inhibitor (control; nâ=â264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ supportâfree days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ supportâfree days among critically ill patients was 10 (â1 to 16) in the ACE inhibitor group (nâ=â231), 8 (â1 to 17) in the ARB group (nâ=â217), and 12 (0 to 17) in the control group (nâ=â231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ supportâfree days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef
Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances (âŒ19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MSn) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR
Recommended from our members
Closing the gap between existing largeâarea imaging research and marine conservation needs
Emerging technology has immense potential to increase the scale and efficiency of marine conservation. One such technology is large-area imaging (LAI), which relies on structure-from-motion photogrammetry to create composite products, including 3-dimensional (3-D) environmental models, that are larger in spatial extent than the individual images used to create them. Use of LAI has become widespread in certain fields of marine science, primarily to measure the 3D structure of benthic ecosystems and track change over time. However, the use of LAI in the field of marine conservation appears limited. We conducted a review of the coral reef literature on the use of LAI to identify research themes and regional trends in applications of this technology. We also surveyed 135 coral reef scientists and conservation practitioners to determine community familiarity with LAI, evaluate barriers practitioners face in using LAI, and identify applications of LAI believed to be most exciting or relevant to coral conservation. Adoption of LAI was limited primarily to researchers at institutions based in advanced economies and was applied infrequently to conservation, although conservation practitioners and survey respondents from emerging economies indicated they expect to use LAI in the future. Our results revealed disconnect between current LAI research topics and conservation priorities identified by practitioners, highlighting the need for more diverse, conservation-relevant research using LAI. We provide recommendations for how early adopters of LAI (typically Global North scientists from well-resourced institutions) can facilitate access to this conservation technology. These recommendations include developing training resources, creating partnerships for data storage and analysis, publishing standard operating procedures for LAI workflows, standardizing methods, developing tools for efficient data extraction from LAI products, and conducting conservation-relevant research using LAI
- âŠ