3 research outputs found
Influence of naturally-occurring 5â˛-pyrophosphate-linked substituents on the binding of adenylic inhibitors to ribonuclease a: An X-ray crystallographic study
Ribonuclease A is the archetype of a functionally diverse superfamily of vertebrate-specific ribonucleases. Inhibitors of its action have potential use in the elucidation of the in vivo roles of these enzymes and in the treatment of pathologies associated therewith. Derivatives of adenosine 5â˛-pyrophosphate are the most potent nucleotide-based inhibitors known. Here, we use X-ray crystallography to visualize the binding of four naturally-occurring derivatives that contain 5â˛-pyrophosphate-linked extensions. 5â˛-ATP binds with the adenine occupying the B2 subsite in the manner of an RNA substrate but with the Îł-phosphate at the P1 subsite. Diadenosine triphosphate (Ap3A) binds with the adenine in syn conformation, the β-phosphate as the principal P1 subsite ligand and without order beyond the Îł-phosphate. NADPH and NADP+ bind with the adenine stacked against an alternative rotamer of His119, the 2â˛-phosphate at the P1 subsite, and without order beyond the 5â˛-Îą-phosphate. We also present the structure of the complex formed with pyrophosphate ion. The structural data enable existing kinetic data on the binding of these compounds to a variety of ribonucleases to be rationalized and suggest that as the complexity of the 5â˛-linked extension increases, the need to avoid unfavorable contacts places limitations on the number of possible binding modes. Š 2009 Wiley Periodicals, Inc. Biopolymers 91: 995â1008, 2009