235 research outputs found

    The metallicity extremes of the Sagittarius dSph using SALT spectroscopy of PNe

    Full text link
    In this work we present the first spectroscopic results obtained with the Southern African Large Telescope (SALT) telescope during its perfomance-verification phase. We find that the Sagittarius dwarf spheroidal galaxy (Sgr) Sgr contains a youngest stellar population with [O/H] -0.2 and age t>1 Gyr, and an oldest population with [O/H]=-2.0. The values are based on spectra of two planetary nebulae (PNe), using empirical abundance determinations. We calculated abundances for O, N, Ne, Ar, S, Cl, Fe, C and He. We confirm the high abundances of PN StWr2-21 with 12+log(O/H) = 8.57+/-0.02 dex. The other PN studied, BoBn1, is an extraordinary object in that the neon abundance exceeds that of oxygen. The abundances of S, Ar and Cl in BoBn1 yield the original stellar metallicity, corresponding to 12+log(O/H) = 6.72+/-0.16 dex which is 1/110 of the solar value. The actual [O/H] is much higher: third dredge-up enriched the material by a factor of ~12 in oxygen, ~240 in nitrogen and ~70 in neon. Neon as well as nitrogen and oxygen content may have been produced in the intershell of low-mass AGB stars. Well defined broad WR lines are present in the spectrum of StWr2-21 and absent in the spectrum of BoBn1. This puts the fraction of [WR]-type central PNe stars to 67% for dSph galaxies.Comment: 14 pages, 4 figures, accepted to MNRA

    Planetary Nebulae as a Probe of the Local Group Galaxies Evolution

    Get PDF
    We present the latest results from our study of PNe and HII regions in two Local Group dwarf irregular galaxies IC 10 and NGC 682

    [O III]λ5007\lambda 5007 and X-ray Properties of a Complete Sample of Hard X-ray Selected AGNs in the Local Universe

    Full text link
    We study the correlation between the [O III]λ5007\lambda 5007 and X-ray luminosities of local Active Galactic Nuclei (AGNs), using a complete, hard X-ray (>10>10 keV) selected sample in the Swift/BAT 9-month catalog. From our optical spectroscopic observations at the South African Astronomical Observatory and the literature, a catalog of [O III]λ5007\lambda 5007 line flux for all 103 AGNs at Galactic latitudes of b>15|b|>15^\circ is complied. Significant correlations with intrinsic X-ray luminosity (LXL_{\rm X}) are found both for observed (L[O III]L_{\rm [O~III]}) and extinction-corrected (L[O III]corL_{\rm [O~III]}^{\rm cor}) luminosities, separately for X-ray unabsorbed and absorbed AGNs. We obtain the regression form of L[O III]L_{\rm [O~III]} L210  keV1.18±0.07\propto L_{\rm 2-10\; keV}^{1.18\pm0.07} and L[O III]corL_{\rm [O~III]}^{\rm cor} L210  keV1.16±0.09\propto L_{\rm 2-10\; keV}^{1.16\pm0.09} from the whole sample. The absorbed AGNs with low (<<0.5\%) scattering fractions in soft X-rays show on average smaller L[O III]/LXL_{\rm [O~III]}/L_{\rm X} and L[O III]cor/LXL_{\rm [O~III]}^{\rm cor}/L_{\rm X} ratios than the other absorbed AGNs, while those in edge-on host galaxies do not. These results suggest that a significant fraction of this population are buried in tori with small opening angles. By using these L[O III]L_{\rm [O~III]} vs. LXL_{\rm X} correlations, the X-ray luminosity function of local AGNs (including Compton thick AGNs) in a standard population synthesis model gives much better agreement with the [O III]λ5007\lambda 5007 luminosity function derived from the Sloan Digital Sky Survey than previously reported. This confirms that hard X-ray observations are a very powerful tool to find AGNs with high completeness.Comment: 14 pages including 11 figures and 3 tables, accepted for publication in ApJ. In this manuscript, the observed 14-195 keV luminosities in Table 1 have been corrected to be exactly the same as in the original Swift/BAT 9-month catalog. Accordingly, Figures 2(a) and 3(a) and a part of Tables 2 and 3 have been updated. The changes from the previous version are small and do not affect the tex

    Near and mid-infrared colours of star-forming galaxies in ELAIS fields

    Get PDF
    We present J and K-band near-infrared photometry of a sample of mid-infrared sources detected by the Infrared Space Observatory (ISO) as part of the European Large Area ISO-Survey (ELAIS) and study their classification and star-forming properties. We have used the Preliminary ELAIS Catalogue for the 6.7 micron (LW2) and 15 micron (LW3) fluxes. All of the high-reliability LW2 sources and 80 per cent of the LW3 sources are identified in the near-IR survey reaching K = 17.5 mag. The near- to mid-IR flux ratios can effectively be used to separate stars from galaxies in mid-IR surveys. The stars detected in our survey region are used to derive a new accurate calibration for the ELAIS ISOCAM data in both the LW2 and LW3 filters. We show that near to mid-IR colour-colour diagrams can be used to further classify galaxies, as well as study star-formation. The ISOCAM ELAIS survey is found to mostly detect strongly star-forming late-type galaxies, possibly starburst powered galaxies, and it also picks out obscured AGN. The ELAIS galaxies yield an average mid-IR flux ratio LW2/LW3 = 0.67 +/- 0.27. We discuss this [6.7/15] ratio as a star formation tracer using ISO and IRAS data of a local comparison sample. We find that the [K/15] ratio is also agood indicator of activity level in galaxies and conclude that the drop in the [6.7/15] ratio seen in strongly star-forming galaxies is a result of both an increase of 15 mic emission and an apparent depletion of 6.7 mic emission. Near-IR data together with the mid-IR give the possibility to estimate the relative amount of interstellar matter in the galaxies.Comment: 18 pages, 15 figures; accepted for publication in MNRA

    Intra-orogenic Svecofennian magmatism in SW Finland constrained by LA-MC-ICP-MS zircon dating and geochemistry

    Get PDF
    We have studied plutonic rocks from the Korpo and Rauma areas of south-western Finland which can be categorized as intra-orogenic, i.e. they were intruded during a proposed extensional period between the two main Svecofennian orogenic cycles: the Fennian and Svecobaltic orogenies. The diorite from Rauma yielded an age of 1865 +/- 9 Ma and the diorite from Korpo an age of 1852 +/- 4 Ma. The adjacent garnet-bearing Korpo granite was 1849 +/- 8 Ma in age. Zircons from the granite also included inherited Archaean and older Palaeoproterozic zircons, as well as metamorphic c. 1820 Ma rims. The diorites are high-K to shoshonitic, mantle-derived magmas, rich in Fe, P, F and light rare earth elements. The Korpo granites show typical features of crustal-derived melts and form hybrids with the diorites in contact zones. Both the mantle-derived and crustal-derived intra-orogenic magmatism are considered to have had a causal effect on the subsequent late Svecofennian (Svecobaltic) thermal evolution in southern Finland which culminated in granulite facies metamorphism and large-scale crustal melting.</p

    V5852 Sgr : an unusual nova possibly associated with the Sagittarius stream

    Get PDF
    We report spectroscopic and photometric follow-up of the peculiar nova V5852~Sgr (discovered as OGLE-2015-NOVA-01), which exhibits a combination of features from different nova classes. The photometry shows a flat-topped light curve with quasi-periodic oscillations, then a smooth decline followed by two fainter recoveries in brightness. Spectroscopy with the Southern African Large Telescope shows first a classical nova with an Fe II or Fe IIb spectral type. In the later spectrum, broad emissions from helium, nitrogen and oxygen are prominent and the iron has faded which could be an indication to the start of the nebular phase. The line widths suggest ejection velocities around 1000 km s-1. The nova is in the direction of the Galactic bulge and is heavily reddened by an uncertain amount. The V magnitude 16 days after maximum enables a distance to be estimated and this suggests that the nova may be in the extreme trailing stream of the Sagittarius dwarf spheroidal galaxy. If so it is the first nova to be detected from that, or from any dwarf spheroidal galaxy. Given the uncertainty of the method and the unusual light curve we cannot rule out the possibility that it is in the bulge or even the Galactic disk behind the bulge.Publisher PDFPeer reviewe
    corecore