20 research outputs found

    Analysis of the Lifecycle of Mechanical Engineering Products

    Get PDF
    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing technology are interrelated through a maximal possible company profit. The products are to be recycled by their producer. Recycling should be considered as a feedback phase, necessary to make the whole lifecycle of the product a constantly functioning self-organizing system. The principles, outlined in this paper can be used as fundamentals to develop an automated PLM-system

    The effect of cutting conditions on power inputs when machining

    Get PDF
    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting

    On the Problem of Wear Resistant Coatings Separation From Tools and Machine Elements

    Get PDF
    The article considers separation of wear resistant coatings of tool and engineering materials which arises both during coating fabrication and use of the product. The cause of this phenomenon is assumed to be related to thermal residual stresses generating on the coatingsubstrate border. These stresses have been analyzed and methods are provided to calculate it after produced composite material is cooled down from the temperature of coating synthesis to the ambient temperature. A no-fracture condition has been stated in relation to coatingsubstrate thicknesses, temperature differences and physical and mechanical properties of combined materials. The issue of intermediate layer incorporation with pre-set parameters has been discussed. A co-effect of thermal residual and functional stresses on the strength of the boundary layer has been considered when heating, tension and compression of a product with wear resistant coating. Conclusions have been made, as well as recommendations to improve fracture strength of products with thin wear resistant coatings

    On Organizing Quick Change-Over Mass Production

    Get PDF
    The terms "type of production" and "coefficient of assigning operations" are analyzed. A new method of calculating the optimum production plan based on profit projections is suggested. We recommend using the cycle time values as initial data for designing and developing technology. On the basis of existing techniques used to convert productions we suggest a new approach to production change-over with the service life of manufacturing facilities equal to the time to product's obsolescence. The factors to maximize profits using this change-over method are indicated, with maximum profits being a condition for the organization of quick change-change mass production

    Controlling the type and the form of chip when machining steel

    Get PDF
    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface

    The effect of cutting conditions on power inputs when machining

    Get PDF
    Any technological process involving modification of material properties or product form necessitates consumption of a certain power amount. When developing new technologies one should take into account the benefits of their implementation vs. arising power inputs. It is revealed that procedures of edge cutting machining are the most energy-efficient amongst the present day forming procedures such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc, such as physical and technical methods including electrochemical, electroerosion, ultrasound, and laser processing, rapid prototyping technologies etc. An expanded formula for calculation of power inputs is deduced, which takes into consideration the mode of cutting together with the tip radius, the form of the replaceable multifaceted insert and its wear. Having taken as an example cutting of graphite iron by the assembled cutting tools with replaceable multifaceted inserts the authors point at better power efficiency of high feeding cutting in comparison with high-speed cutting
    corecore