244 research outputs found

    First polarimetric observations and modeling of the FeH F^4 Delta-X^4 Delta system

    Full text link
    Lines of diatomic molecules are more temperature and pressure sensitive than atomic lines, which makes them ideal tools for studying cool stellar atmospheres an internal structure of sunspots and starspots. The FeH F^4 Delta-X^4 Delta system represents such an example that exhibits in addition a large magnetic field sensitivity. The current theoretical descriptions of these transitions including the molecular constants involved are only based on intensity measurements because polarimetric observations have not been available so far, which limits their diagnostic value. We present for the first time spectropolarimetric observations of the FeH F^4 Delta-X^4 Delta system measured in sunspots to investigate their diagnostic capabilities for probing solar and stellar magnetic fields. We investigate whether the current theoretical model of FeH can reproduce the observed Stokes profiles including their magnetic properties. The polarimetric observations are compared with synthetic Stokes profiles modeled with radiative transfer calculations. This allows us to infer the temperature and the magnetic field strength of the observed sunspots. We find that the current theory successfully reproduces the magnetic properties of a large number of lines in the FeH F^4 Delta-X^4 Delta system. In a few cases the observations indicate a larger Zeeman splitting than predicted by the theory. There, our observations have provided additional constraints, which allowed us to determine empirical molecular constants. The FeH F^4 Delta-X^4 Delta system is found to be a very sensitive magnetic diagnostic tool. Polarimetric data of these lines provide us with more direct information to study the coolest parts of astrophysical objects.Comment: 4 pages, 3 figure

    Center-to-limb polarization in continuum spectra of F, G, K stars

    Full text link
    Context. Scattering and absorption processes in stellar atmosphere affect the center-to-limb variations of the intensity (CLVI) and the linear polarization (CLVP) of stellar radiation. Aims. There are several theoretical and observational studies of CLVI using different stellar models, however, most studies of CLVP have concentrated on the solar atmosphere and have not considered the CLVP in cooler non-gray stellar atmospheres at all. In this paper, we present a theoretical study of the CLV of the intensity and the linear polarization in continuum spectra of different spectral type stars. Methods. We solve the radiative transfer equations for polarized light iteratively assuming no magnetic field and considering a plane-parallel model atmospheres and various opacities. Results. We calculate the CLVI and the CLVP for Phoenix stellar model atmospheres for the range of effective temperatures (4500K - 6900K), gravities (log g = 3.0 - 5.0), and wavelengths (4000 - 7000 {\AA}), which are tabulated and available at the Strasbourg astronomical Data Center (CDS). In addition, we present several tests of our code and compare our results with measurements and calculations of CLVI and the CLVP for the Sun. The resulting CLVI are fitted with polynomials and their coefficients are presented in this paper. Conclusions. For the stellar model atmospheres with lower gravity and effective temperature the CLVP is larger.Comment: 10 pages, 8 figure

    Orbital parameters of extrasolar planets derived from polarimetry

    Full text link
    Polarimetry of extrasolar planets becomes a new tool for their investigation, which requires the development of diagnostic techniques and parameter case studies. Our goal is to develop a theoretical model which can be applied to interpret polarimetric observations of extrasolar planets. Here we present a theoretical parameter study that shows the influence of the various involved parameters on the polarization curves. Furthermore, we investigate the robustness of the fitting procedure. We employ the physics of Rayleigh scattering to obtain polarization curves of an unresolved extrasolar planet. Calculations are made for two cases: (i) assuming an angular distribution for the intensity of the scattered light as from a Lambert sphere and for polarization as from a Rayleigh-type scatterer, and (ii) assuming that both the intensity and polarization of the scattered light are distributed according to the Rayleigh law. We show that the difference between these two cases is negligible for the shapes of the polarization curves. In addition, we take the size of the host star into account, which is relevant for hot Jupiters orbiting giant stars

    The first close-up of the "flip-flop" phenomenon in a single star

    Full text link
    We present temperature maps of the active late-type giant FK Com which exhibit the first imagining record of the ``flip-flop'' phenomenon in a single star. The phenomenon, in which the main part of the spot activity shifts 180 degrees in longitude, discovered a decade ago in FK Com, was reported later also in a number of RS CVn binaries and a single young dwarf. With the surface images obtained right before and after the ``flip-flop'', we clearly show that the ``flip-flop'' phenomenon in FK Com is caused by changing the relative strengths of the spot groups at the two active longitudes, with no actual spot movements across the stellar surface, i.e. exactly as it happens in other active stars.Comment: 4 pages, accepted by A&A Letter

    On X-ray Optical Depth in the Coronae of Active Stars

    Full text link
    We have investigated the optical thickness of the coronal plasma through the analysis of high-resolution X-ray spectra of a large sample of active stars observed with the High Energy Transmission Grating Spectrometer on Chandra. In particular, we probed for the presence of significant resonant scattering in the strong Lyman series lines arising from hydrogen-like oxygen and neon ions. The active RS CVn-type binaries II Peg and IM Peg and the single M dwarf EV Lac show significant optical depth. For these active coronae, the Lya/Lyb ratios are significantly depleted as compared with theoretical predictions and with the same ratios observed in similar active stars. Interpreting these decrements in terms of resonance scattering of line photons out of the line-of-sight, we are able to derive an estimate for the typical size of coronal structures, and from these we also derive estimates of coronal filling factors. For all three sources we find that the both the photon path length as a fraction of the stellar radius, and the implied surface filling factors are very small and amount to a few percent at most. The measured Lya/Lyb ratios are in good agreement with APED theoretical predictions, thus indicating negligible optical depth, for the other sources in our sample. We discuss the implications for coronal structuring and heating flux requirements. For the stellar sample as a whole, the data suggest increasing quenching of Lya relative to Lyb as function of both L_x/L_bol and the density-sensitive MgXI forbidden to intercombination line ratio, as might generally be expected.Comment: Accepted for publication on the Astrophysical Journa

    Complexity of magnetic fields on red dwarfs

    Full text link
    Magnetic fields in cool stars can be investigated by measuring Zeeman line broadening and polarization in atomic and molecular lines. Similar to the Sun, these fields are complex and height-dependent. Many molecular lines dominating M-dwarf spectra (e.g., FeH, CaH, MgH, and TiO) are temperature -- and Zeeman -- sensitive and form at different atmospheric heights, which makes them excellent probes of magnetic fields on M dwarfs. Our goal is to analyze the complexity of magnetic fields in M dwarfs. We investigate how magnetic fields vary with the stellar temperature and how "surface" inhomogeneities are distributed in height -- the dimension that is usually neglected in stellar magnetic studies. We have determined effective temperatures of the photosphere and of magnetic features, magnetic field strengths and filling factors for nine M dwarfs (M1-M7). Our chi^2 analysis is based on a comparison of observed and synthetic intensity and circular polarization profiles. Stokes profiles were calculated by solving polarized radiative transfer equations. Properties of magnetic structures depend on the analyzed atomic or molecular species and their formation heights. Two types of magnetic features similar to those on the Sun have been found: a cooler (starspots) and a hotter (network) one. The magnetic field strength in both starspots and network is within 3 kG to 6 kG, on average it is 5 kG. These fields occupy a large fraction of M dwarf atmospheres at all heights, up to 100%. The plasma beta is less than one, implying highly magnetized stars. A combination of molecular and atomic species and a simultaneous analysis of intensity and circular polarization spectra have allowed us to better decipher the complexity of magnetic fields on M dwarfs, including their dependence on the atmospheric height. This work provides an opportunity to investigate a larger sample of M dwarfs and L-type brown dwarfs.Comment: 15 pages, 6 figure
    • …
    corecore