41 research outputs found

    On in situ Determination of Earth Matter Density in Neutrino Factory

    Full text link
    We point out that an accurate in situ determination of the earth matter density \rho is possible in neutrino factory by placing a detector at the magic baseline, L = \sqrt{2} \pi / G_{F} N_{e} where N_{e} denotes electron number density. The accuracy of matter density determination is excellent in a region of relatively large theta_{13} with fractional uncertainty \delta \rho / \rho of about 0.43%, 1.3%, and \lsim 3% at 1 sigma CL at sin^2 2theta_{13}=0.1, 10^{-2}, and 3 x 10^{-3}, respectively. At smaller theta_{13} the uncertainty depends upon the CP phase delta, but it remains small, 3%-7% in more than 3/4 of the entire region of delta at sin^2 2theta_{13} = 10^{-4}. The results would allow us to solve the problem of obscured CP violation due to the uncertainty of earth matter density in a wide range of theta_{13} and delta. It may provide a test for the geophysical model of the earth, or it may serve as a method for stringent test of the MSW theory of neutrino propagation in matter once an accurate geophysical estimation of the matter density is available.Comment: 21 pages, 4 figures, version to appear in PR

    Testing CPT Symmetry with Supernova Neutrinos

    Full text link
    Diagnosing core of supernova requires favor-dependent reconstruction of three species of neutrino spectra, \nu_e, \bar{\nu}_{e} and \nu_x (a collective notation for \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, and \bar{\nu}_{\tau}). We point out that, assuming the information available, CPT symmetry can be tested with supernova neutrinos. We classify all possible level crossing patterns of neutrinos and antineutrinos into six cases and show that half of them contains only the CPT violating mass and mixing patterns. We discuss how additional informations from terrestrial experiments help identifying CPT violation by narrowing down the possible flux patterns. Although the method may not be good at precision test, it is particularly suited to uncover gross violation of CPT such as different mass patterns of neutrinos and antineutrinos. The power of the method is due to the nature of level crossing in supernova which results in the sensitivity to neutrino mass hierarchy and to the unique characteristics of in situ preparation of both \nu and \bar{\nu} beams. Implications of our discussion to the conventional analyses with CPT conservation are also briefly mentioned.Comment: 24 pages, 4 figures, discussion added on narrowing down flux patterns by terrestrial measuremen

    Probing Non-Standard Neutrino Interactions with Neutrino Factories

    Full text link
    We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode \nu_e --> \nu_\mu and consider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of \theta_{13} and \delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters \epsilon_{\alpha \beta} are switched on. The sensitivities to off-diagonal \epsilon's are found to be excellent up to small values of \theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the \theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.Comment: 47 pages, 22 figures. Color version of Figs. 18, 19 and 22 can be found in the article published in JHE

    Perturbation Theory of Neutrino Oscillation with Nonstandard Neutrino Interactions

    Full text link
    We discuss various physics aspects of neutrino oscillation with non-standard interactions (NSI). We formulate a perturbative framework by taking \Delta m^2_{21} / \Delta m^2_{31}, s_{13}, and the NSI elements \epsilon_{\alpha \beta} (\alpha, \beta = e, \mu, \tau) as small expansion parameters of the same order \epsilon. Within the \epsilon perturbation theory we obtain the S matrix elements and the neutrino oscillation probability formula to second order (third order in \nu_e related channels) in \epsilon. The formula allows us to estimate size of the contribution of any particular NSI element \epsilon_{\alpha beta} to the oscillation probability in arbitrary channels, and gives a global bird-eye view of the neutrino oscillation phenomena with NSI. Based on the second-order formula we discuss how all the conventional lepton mixing as well as NSI parameters can be determined. Our results shows that while \theta_{13}, \delta, and the NSI elements in \nu_e sector can in principle be determined, complete measurement of the NSI parameters in the \nu_\mu - \nu_\tau sector is not possible by the rate only analysis. The discussion for parameter determination and the analysis based on the matter perturbation theory indicate that the parameter degeneracy prevails with the NSI parameters. In addition, a new solar-atmospheric variable exchange degeneracy is found. Some general properties of neutrino oscillation with and without NSI are also illuminated.Comment: manuscript restructured, discussion of new type of parameter degeneracy added. 47 page

    Recoilless Resonant Absorption of Monochromatic Neutrino Beam for Measuring Delta m^2_{31} and theta_{13}

    Full text link
    We discuss, in the context of precision measurement of Delta m^2_{31} and theta_{13}, physics capabilities enabled by the recoilless resonant absorption of monochromatic antineutrino beam enhanced by the M\"ossbauer effect recently proposed by Raghavan. Under the assumption of small relative systematic error of a few tenth of percent level between measurement at different detector locations, we give analytical and numerical estimates of the sensitivities to Delta m^2_{31} and sin^2 2theta_{13}. The accuracies of determination of them are enormous; The fractional uncertainty in Delta m^2_{31} achievable by 10 point measurement is 0.6% (2.4%) for sin^2 2theta_{13} = 0.05, and the uncertainty of sin^2 2theta_{13} is 0.002 (0.008) both at 1 sigma CL with the optimistic (pessimistic) assumption of systematic error of 0.2% (1%). The former opens a new possibility of determining the neutrino mass hierarchy by comparing the measured value of Delta m^2_{31} with the one by accelerator experiments, while the latter will help resolving the theta_{23} octant degeneracy.Comment: 23 pages, 3 figures, version to appear in New Journal of Physic

    Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice

    Get PDF
    Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases

    Phonon Excitation in Quantum Lattice Model

    No full text
    corecore