61 research outputs found

    The 129-iodine content of subtropical Pacific waters : impact of Fukushima and other anthropogenic 129-iodine sources

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 4839-4852, doi:10.5194/bg-11-4839-2014.Results obtained from a dedicated radiochemistry cruise approximately 100 days after the 11 March 2011 Tohoku earthquake and subsequent disaster at the Fukushima Daiichi Nuclear Power Plant show that Fukushima derived radionuclides in the nearby ocean environment had penetrated, on average, to ≤250 m depth (1026.5 kg m3 potential density surface). The excess inventory of Fukushima-derived 129I in the region (∼150 000 km2) sampled during the cruise is estimated to have been between 0.89 and 1.173 billion Bq (∼136 to ∼179 grams) of 129I. Based on a tight tracer–tracer relation with 134Cs (or 137Cs) and estimates that most of the excess cesium is due to direct discharge, we infer that much of the excess 129I is from direct (non-atmospheric deposition) discharge. After taking into account oceanic transport, we estimate the direct discharge, i.e., that directly released into the ocean, off Fukushima to have been ∼1 kg 129I. Although this small pulse is dwarfed by the ~90 kg of weapons-testing-derived 129I that was released into the environment in the late 1950s and early 1960s, it should be possible to use Fukushima-derived 129I and other radionuclides (e.g., 134, 137Cs) to study transport and entrainment processes along and across the Kuroshio Current.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344

    Reaction rate sensitivity of 44Ti production in massive stars and implications of a thick target yield measurement of 40Ca(alpha,gamma)44Ti

    Full text link
    We evaluate two dominant nuclear reaction rates and their uncertainties that affect 44Ti production in explosive nucleosynthesis. Experimentally we develop thick-target yields for the 40Ca(alpha,gamma)44Ti reaction at E(alpha) = 4.13, 4.54, and 5.36 MeV using gamma-ray spectroscopy. At the highest beam energy, we also performed an activation measurement that agrees with the thick target result. From the measured yields a stellar reaction rate was developed that is smaller than current statistical-model calculations and recent experimental results, which would suggest lower 44Ti production in scenarios for the alpha-rich freeze out. Special attention has been paid to assessing realistic uncertainties of stellar rates produced from a combination of experimental and theoretical cross sections, which we use to develop a re-evaluation of the 44Ti(alpha,p)47V reaction rate. Using these we carry out a sensitivity survey of 44Ti synthesis in eight expansions representing peak temperature and density conditions drawn from a suite of recent supernova explosion models. Our results suggest that the current uncertainty in these two reaction rates could lead to as large an uncertainty in 44Ti synthesis as that produced by different treatments of stellar physics.Comment: Comments: 45 pages, 19 postscript figures Minor corrections from Referee and Proof Editors Figs 9 & 10 now in colo

    Variable Levels Of Drift In Tunicate Cardiopharyngeal Gene Regulatory Elements

    Get PDF
    Background: Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated. Results: Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, Corella inflata and Ciona robusta. Cross-species analysis of regulatory elements suggests that trans-regulatory architecture is largely conserved between these highly divergent species. In contrast, cis-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor FoxF is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of FoxF enhancer function, suggesting that bound trans-factors form position-dependent complexes. Conclusions: Our findings reveal heterogeneous levels of divergence across cardiopharyngeal cis-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of cis-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architecture

    Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors

    Get PDF
    Ion irradiation is often used to simulate the effects of neutron irradiation due to reduced activation of materials and vastly increased dose rates. However, the low penetration depth of ions requires the development of smallscale mechanical testing techniques, such as nanoindentation and microcompression, in order to measure mechanical properties of the irradiated material. In this study, several candidate structural alloys for Gen-IV reactors (800H, T91, nanocrystalline T91 and 14YWT) were irradiated with 70 MeV Fe9+ ions at 452 °C to an average damage of 20.68 dpa. Both the nanoindentation and microcompression techniques revealed significant irradiation hardening and an increase in yield stress after irradiation in austenitic 800H and ferritic-martensitic T91 alloys. Ion irradiation was observed to have minimal effect on the mechanical properties of nanocrystalline T91 and oxide dispersion strengthened 14YWT. These observations are further supported by line broadening analysis of X-ray diffraction measurements, which show a significantly smaller increase in dislocation density in the 14YWT and nanocrystalline T91 alloys after irradiation. In addition, good agreement was observed between cross-sectional nanoindentation and the damage profile from SRIM calculations
    • …
    corecore